2023/08/04 10:03 1/3

Практическая работа №1: Решение нелинейных уравнений и систем

Цель работы

Сформировать представление о методах решения нелинейных уравнений и систем нелинейных уравнений, выработать умение составлять и применять алгоритмы для решения уравнений и систем уравнений, привить навык использования программных средств для решения нелинейных уравнений и систем нелинейных уравнений.

Постановка задачи

Численно решить уравнение и систему уравнений методами Ньютона и простых итераций с заданной точностью \$ \varepsilon \$. Значение \$ \varepsilon \$ варьируется от 0.1 до 0.000001.

Порядок выполнения работы

- 1. При решении уравнения f(x) = 0:
 - 1. Графически или аналитически отделить корни уравнения f(x) = 0, т.е. найти отрезки [a, b], на которых функция удовлетворяет условиям теоремы Больцано-Коши.
 - 2. Составить подпрограмму вычисления функции f(x).
 - 3. Для метода Ньютона:
 - 1. Составить программу newton() для вычисления корня уравнения методом Ньютона с заданной точностью \$ \varepsilon \$.
 - 2. Провести вычисления по программе для каждого корня. Заполнить табл. 1 при различных значениях \$ \varepsilon \$. Сделать выводы.
 - 3. Для наименьшего корня (**для нечётных вариантов**) и для наибольшего корня (**для чётных вариантов**) заполнить табл. 2 при \$ \varepsilon = 0.000001 \$. Сделать выводы.
 - 4. Теоретически и экспериментально исследовать скорость сходимости и обусловленность метода. Сделать выводы
 - 4. Для метода простых итераций:
 - 1. Привести уравнение f(x) = 0\$ к виду $x = \operatorname{Varphi}(x)$ \$, где $\operatorname{Varphi}(x) = x + \operatorname{Varphi}(x)$ \$, $\operatorname{Varphi}(x)$ \$ на сходимость. Составить программу $\operatorname{phi}(x)$ \$ на сходимость. Составить программу $\operatorname{phi}(x)$ \$, удовлетворяющей сходимости.
 - 2. Составить программу siter() для вычисления корня уравнения методом простых итераций с заданной точностью \$ \varepsilon \$.
 - 3. Провести вычисления по программе для каждого корня. Заполнить табл. 1 при различных значениях \$ \varepsilon \$. Сделать выводы.
 - 4. Для наименьшего корня (**для нечётных вариантов**) и для наибольшего корня (**для чётных вариантов**) заполнить табл. 3 при \$ \varepsilon = 0.000001

- Сделать выводы.
- 5. Теоретически и экспериментально исследовать скорость сходимости и обусловленность метода. Сделать выводы.
- 2. При решении системы уравнений F(X) = 0:
 - 1. Графически отделить решения системы нелинейных уравнений F(X) = 0 \$.
 - 2. Составить подпрограммы для вычисления функций f(x, y) и f(x, y)Составить подпрограмму вычисления системы F(X) \$.
 - 3. Для метода Ньютона:
 - 1. Составить программу newts() для вычисления решений системы уравнений методом Ньютона с заданной точностью \$ \varepsilon \$.
 - 2. Провести вычисления по программе для каждого корня. Заполнить табл. 4 при указанных значениях \$ \varepsilon \$. Сделать выводы.
 - Для одного из корней заполнить табл. 5 при \$ \varepsilon = 0.000001 \$. Сделать выводы.
 - 4. Для метода простых итераций:
 - 1. Привести систему F(X) = 0 K виду $X = \Phi(X)$, где $\Phi(X) = X + \Phi(X)$ \Lambda F(X) \$, \$ \Lambda \$ - некоторая мажорирующая матрица. Проверить матрицу \$ \Phi(X) \$ на сходимость. Составить программу Phi() для функции \$ \Phi(X) \$, удовлетворяющей сходимости.
 - 2. Составить программу siters() для вычисления решения системы уравнений методом простых итераций с заданной точностью \$ \varepsilon \$.
 - 3. Провести вычисления по программе для каждого корня. Заполнить табл. 4 при указанных значениях \$ \varepsilon \$. Сделать выводы.
 - 4. Для одного из корней заполнить табл. 6 при \$ \varepsilon = 0.000001 \$. Сделать выводы.

Таблицы

Таблица 1

Значение \$ \varepsilon \$	Значение \$ x_ 1 \$	Значение \$ х_2 \$	Число итераций \$ k \$
0.1			

Таблица 2

Значение \$ k \$	Значение \$ x^{(k)} \$	Значение \$ f(x^{(k)}) \$	Значение \$ f'(x^{(k)}) \$	Значение \$ - f(x^{(k)})/f'(x^{(k)}) \$
0				

Таблица 3

Значение \$ k \$	Значение \$ x^{(k)} \$	Значение \$ \varphi(x^{(k)}) \$		
0				

Printed on 2023/08/04 10:03 http://se.moevm.info/

2023/08/04 10:03 3/3

Таблица 4

Значение \$ \varepsilon \$	Значение \$ \vec r_1 = (x_1, y_1) \$	Значение \$ \vec r_2 = (x_2, y_2) \$	Число итераций \$ k \$	
0.1				

Таблица 5

Значение \$ k \$	Значение \$ \vec r^{(k)} \$	Значение \$ f_1(\vec r^{(k)}) \$	Значение \$ -J^{-1}(\vec r^{(k)}) \cdot F(\vec r^{(k)}) \$
0			

Таблица 6

3н	ачение \$ k \$	Значение \$ \vec r^{(k)	} \$	Значение \$ \Phi(\vec r^{(k)}) \$	
	0				

Варианты заданий

Выполнение работ осуществляется по индивидуальным вариантам заданий (уравнений и систем уравнений). Номер варианта для каждого студента определяется преподавателем.

Варианты к практической работе №1

Содержание отчёта

- Цель работы.
- Краткое изложение основных теоретических понятий.
- Постановка задачи с кратким описанием порядка выполнения работы.
- Графическое или аналитическое решение уравнения. Обоснование выбора начального приближения.
- Необходимые рисунки и таблицы с краткими выводами.
- Теоретические скорости сходимости методов и их экспериментальное доказательство. Сравнение методов.
- Общий вывод по проделанной работе.
- Код программы.

From

http://se.moevm.info/ - se.moevm.info

Permanent link:

http://se.moevm.info/doku.php/courses:computational_mathematics:prac1?rev=1650130770

Last update: 2022/12/10 09:08

