Практическая работа №2: Моделирование центра массового обслуживания

Цель работы

Изучение модели обслуживания заявок с неограниченной очередью.

Основные теоретические положения

Дана следующая модель системы обслуживания, представленная на рис. 1.

Назовём потоком заявок (обслуживания) такой процесс, который генерирует (обслуживает) заявки в случайный момент времени. Соответственно, интенсивностью потока назовём среднее количество событий потока, происходящих в единицу времени.

Пусть поток заявок имеет интенсивность, равную $\$ a поток обслуживания – $\$ причём, $\$ причём, $\$ приведённой интенсивностью $\$ hasoвём отношение интенсивностей потоков и заявок обслуживания: $\$ rho = $\$ lambda $\$ (\mu). \$\$ Время нахождения заявки в системе складывается из времени ожидания в очереди и среднего времени обслуживания. Среднее время обслуживания одной заявки очевидно выражается через интенсивность потока обслуживания, а также через математическое ожидание случайной величины – времени, когда заявка в системе будет обработана: $\$ \bar t_{o6} = $\$ \frac1{\mu} = \int\limits_{\mathbb} R}t \cdot f(t)\, dt = \mathbb E X, \$\$ где \$f(t)\$ – плотность закона распределения случайной величины в потоке обслуживания.

Отношение корня дисперсии времени обслуживания к его среднему называется коэффициентом вариации времени обслуживания: \$\$ \vartheta = \frac{\sigma_{t_{06}}} {\bar t_{06}}} {\bar t_{06}} = \frac{t_{06}}{\colored} {\colored} {\colored}

Постановка задачи

Необходимо смоделировать систему обслуживания заявок с неограниченной очередью с пуассоновским потоком заявок (время отправки сообщения – случайная величина, распределенная по экспоненциальному закону) и тремя различными потоками обслуживания (время обслуживания – случайная величина, распределенная по равномерному, показательному или треугольному закону). Провести эксперимент и выяснить практические характеристики модели. Провести теоретический расчет этих параметров. Оценить

результаты.

Порядок выполнения работы

- 1. Используя пакет GPSS составить программу и провести моделирование центра массового обслужи-вания (ЦМО).
- 2. Провести исследования для экспоненциального закона следования заявок на входе и трех законов распределения интервалов обслуживания (равномерного, экспоненциального и треугольного). Для каждой пары законов распределения (заявок и обслуживания) провести исследование для двух значений приведенной интенсивности \$\rho_1\$, \$\rho_2\$, (\$0 < \rho_i < 1\$), а также для двух значений количества заявок \$N\$, проходящих через систему.
- 3. Получить в результате моделирования основные характеристики ЦМО и оформить их в виде таблиц:
 - максимальную длину очереди, QM;
 - среднюю длину очереди, QA;
 - число заявок, поступивших на обслуживание без очереди, QZ;
 - среднее время пребывания заявки в очереди, включая нулевые входы, QT;
 - среднее время пребывания заявки в очереди (без нулевых входов), QX.
- 4. Получить в результате моделирования характеристики по устройству:
 - ∘ коэффициент загрузки, FR;
 - среднее время обслуживания заявки, FT.
- 5. Получить таблицу значений количества заявок в зависимости от времени пребывания в очереди.
- 6. Рассчитать теоретические значения основных характеристик ЦМО (среднее время пребывания заявки в очереди, среднее время обслуживания заявки).
- 7. Оценить время переходного процесса по полученным теоретическим и практическим значениям среднего времени пребывания заявки в очереди (для этого провести больше опытов при разных \$N\$).
- 8. Провести 10 экспериментов (на одном наборе данных) для экспоненциальных законов следования заявок на входе и обслуживания, рассчитать среднее время ожидания заявки в очереди и СКО.
- 9. Сравнить теоретические и практические результаты (объяснить и обосновать), рассчитав доверительные интервалы для исследуемых характеристик СМО.

Варианты заданий

№ варианта	Значение \$\rho_i\$		Значение \$N_i\$	
1	0.50	0.70	1000	50000
2	0.55	0.90	1500	40000
3	0.45	0.80	2000	55000
4	0.40	0.75	1500	45000
5	0.45	0.85	1750	47500
6	0.40	0.70	1000	55000
7	0.50	0.65	2000	50000
8	0.60	0.80	1000	55000
9	0.60	0.85	1500	47500

http://se.moevm.info/ Printed on 2024/06/02 14:57

№ варианта	Значение	\$\rho_i\$	Значен	ие \$N_i\$
10	0.55	0.75	1000	47500

Содержание отчёта

- Цель работы.
- Краткое изложение основных теоретических понятий.
- Постановка задачи с кратким описанием порядка выполнения работы.
- Результаты моделирования с использованием программы.
- Необходимые рисунки и таблицы с краткими выводами.
- Общий вывод по проделанной работе.
- Код программы.

Тексты программы

TASK2.GPS

Last update: 2022/12/10 courses:system_analysis_modeling_and_optimization:task2 http://se.moevm.info/doku.php/courses:system_analysis_modeling_and_optimization:task2?rev=1561891562 09:08

http://se.moevm.info/ - se.moevm.info

Permanent link: http://se.moevm.info/doku.php/courses:system_analysis_modeling_and_optimization:task2?rev=1561891562

Last update: 2022/12/10 09:08

http://se.moevm.info/ Printed on 2024/06/02 14:57