
Shortest Paths and
Experimental Evaluation of Algorithms

Renato F. Werneck

Microsoft Research Silicon Valley

MIDAS, August 2010

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 1 / 123

The Shortest Path Problem

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 2 / 123

Input:
I directed graph G = (V ,A);
I arc lengths `(v ,w) ≥ 0;
I |V | = n, |A| = m;
I source s, target t.

Goal: find shortest path from s to t.
I its length is denoted by dist(s, t).

Our focus is on road networks:
I V : intersections;
I A: road segments;
I `(·, ·): typically travel times.

Outline

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 3 / 123

1 Dijkstra’s algorithm

2 Basic data structures
3 Acceleration techniques:

I A∗ search and landmarks
I reach-based routing
I contraction hierarchies
I arc flags
I transit node routing

4 Highway dimension

Test Instance: USA Road Network

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 4 / 123

n = 24M vertices, m = 58M arcs.

Arc lengths represent travel times.

Test Instance: Northwestern USA

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 5 / 123

n = 1.65M vertices, m = 3.78M arcs [GKW06];

Arc lengths represent travel times.

Dijkstra’s Algorithm

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 6 / 123

Intuition:
I process vertices in increasing order of distance from the source;
I stop when reaching the target.

Northwestern USA

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 7 / 123

Dijkstra’s algorithm:

Dijkstra’s Algorithm

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 8 / 123

foreach (v ∈ V) d [v]←∞;
d [s]← 0;
Q.Insert(s, 0); // Q: priority queue
while (!Q.IsEmpty()) {

v ← Q.ExtractMin(); // v has smallest distance label
foreach (v ,w){ // scan vertex v

if (d [w] > d [v] + `(v ,w)){ // found better path to w?
d [w]← d [v] + `(v ,w);
if (w ∈ Q) then Q.DecreaseKey(w , d [w]);
else Q.Insert(w , d [w]);

}
}

}

Dijkstra’s Algorithm: Analysis

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 9 / 123

Correctness:
I we always take unscanned vertex with minimum d(v);
I edge lengths are nonnegative ⇒ d(v) is exact (cannot be improved).

Running time depends on priority queue operations:
I O(n) Insert;
I O(n) ExtractMin;
I O(m) DecreaseKey (one per arc).

O(m + n log n) total time with Fibonacci heaps:
I O(log n) time for ExtractMin;
I O(1) for Insert and DecreaseKey.

Dijkstra’s Algorithm: d -heaps

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 10 / 123

Binary heaps are good enough:
I O(log n) time per operation:
I O(m log n) time in total;
I simpler than Fibonacci, often faster in practice.

Road networks: m = O(n) (almost planar).

4-heaps often work better:
I similar to binary heaps, but each element has 4 children;
I fewer levels, more elements per level;
I better locality.

Dijkstra’s Algorithm: Data Structures

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 11 / 123

Dijkstra’s algorithm on Europe with travel times:

DATA STRUCTURE SECONDS

2-heap (binary) 12.38
4-heap 11.53
8-heap 11.52

(Times on 2.4-GHz AMD Opteron with 16 MB of RAM.)

Times are for building full trees:
I about half for random s–t queries;
I stop when t is about to be scanned.

Dijkstra’s Algorithm: Multi-level Buckets

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 12 / 123

Multi-level buckets (MLB):
I put elements in buckets according to their values;
I keep most elements in “wide” buckets (range of values);
I first nonempty “wide” bucket split into “narrow” buckets as needed;
I always remove from narrowest buckets;

F assumes ExtractMin is monotonic, as in Dijkstra’s algorithm.

4–7 8–11 12–15
0 1 2 3

The caliber acceleration for Dijkstra [Gol08]:
I caliber(v): minimum incoming edge of v ;
I Let x be the latest vertex scanned by the algorithm;
I Fact: if d(v) < d(x) + caliber(v), d(v) is exact.

F safe to scan v , even if not yet minimum!

I MLB saves operations by identifying such vertices early.

Dijkstra’s Algorithm: Data Structures

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 13 / 123

Dijkstra’s algorithm on Europe with travel times:

DATA STRUCTURE SECONDS

2-heap (binary) 12.38
4-heap 11.53
8-heap 11.52
multi-level buckets 9.36
multi-level buckets + caliber 8.04

Little hope for much better data structures:
I MLB+caliber is within a factor of 2.5 of BFS [Gol08].

Bidirectional Dijkstra

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 14 / 123

Bidirectional Dijkstra:
I run forward Dijkstra from s with distance labels df (v);
I run reverse Dijkstra from t with distance labels dr (v).
I alternate in any way.

Keep track of best path µ seen so far:
I path minimizing df (v) + `(v ,w) + dr (w).

Stop when some vertex x is about to be scanned twice.
I return µ.

Northwestern USA

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 15 / 123

Bidirectional Dijkstra:

USA Map

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 16 / 123

Bidirectional Dijkstra:

Two-Stage Algorithms

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 17 / 123

On road networks:
I Bidirectional Dijkstra only twice as fast as Dijkstra;
I we would like to do (much) better.

We consider two-stage algorithms:
I Preprocessing:

F executed once for each graph;
F may take a lot of time;
F outputs some auxiliary data.

I Query:
F may use the preprocessed data;
F executed once for each (s,t) pairs;
F should be very fast (real time).

Two-Stage Algorithms

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 18 / 123

Running Dijkstra:
I preprocessing: do nothing;
I query: run Dijkstra.

Full precomputation:
I preprocessing: compute n × n distance table:

F time: n × Dijkstra (Europe: about 5 years);
F space: n × n distance table (Europe: about 1 petabyte);

I query: one table lookup.

Both cases are too extreme.

Two-Stage Algorithms

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 19 / 123

We want something in between:
I preprocessing in minutes/hours;
I linear amount of preprocessed data;
I queries in real time.

Lots of research in the past decade:
I algorithm engineering;
I we’ll study the main ideas.

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 20 / 123

A∗ Search

A∗ Search

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 21 / 123

Take any potential function π(v) mapping vertices to reals.

It defines a reduced cost for each arc:
I `π(v ,w) = `(v ,w)− π(v) + π(w);

Fact: replacing ` by `π does not change shortest paths.
I Take any path P = (s = v0, v1, v2, v3, . . . , vk , t = vk+1):

`π(P) = `π(s, v1) + `π(v1, v2) + `π(v2, v3) + . . . + `π(vk , vt)

= `(s, v1)− π(s) + π(v1) +

`(v1, v2)− π(v1) + π(v2) +

`(v2, v3)− π(v2) + π(v3) +

. . . +

`(vk , t)− π(vk) + π(t)

= `(P)− π(s) + π(t)

I lengths of all s–t paths change by same amount (−π(s) + π(t)).

A∗ Search

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 22 / 123

A∗ search ≡ Dijkstra on graph Gπ:
I same as G , with `(·, ·) replaced by reduced cost `π(·, ·).
I on each step, picks v minimizing `(Psv)− π(s) + π(v).
I π(s) is the same for all v !

Equivalent: use `(·, ·), scanning most promising vertices first:
I increasing order of k(v) = d(v) + π(v).
I k(v): estimated length of shortest s–t path through v .
I d(v): estimate on dist(s, v);
I π(v): estimate on dist(v , t).

Correctness requires `π ≥ 0:
I potential function is feasible;
I gives lower bounds if π(t) ≤ 0.

Effect: goal-directed search.

A∗ Search: Performance

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 23 / 123

π(v) gives lower bounds on dist(v , t).

Performance:
I Worst case: π(v) = 0 for all v (same as Dijkstra);
I Best case: π(v) = dist(v , t) for all v :

F `π(v , w) = 0 if on shortest s–t path, positive otherwise;
F search visits only the shortest path.

I Theorem [GH05]: tighter lower bounds → fewer vertices scanned.

Could use Euclidean-based lower bounds, for example.
I we will see better methods shortly.

A∗ Search: Bidirectional Version

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 24 / 123

Bidirectional A∗ search needs two potential functions:
I forward: pf (v) estimates dist(v , t);
I reverse: pr (v) estimates dist(s, v).

Problem: different forward and reverse costs!
I `pf

(v ,w) = `(v ,w)− pf (v) + pf (w) (arc scanned from v);
I `pr (v ,w) = `(v ,w)− pr (w) + pr (v) (arc scanned from w);
I We need `pf

(v ,w) = `pr (v ,w):
F must have pf (w) + pr (w) = pf (v) + pr (v) = constant;
F functions are consistent.

Solution: use average potential function [IHI+94] instead:

I πf (v) = pf (v)−pr (v)
2

I πr (v) = pr (v)−pf (v)
2 = −πf (v).

I Now πr (u) + πf (u) = 0 for every u.

A∗ Search: The ALT Algorithm

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 25 / 123

Two-phase algorithm.

Preprocessing:
1 pick a few (e.g., 16) vertices as landmarks;
2 compute distances between landmarks and all vertices;
3 store these distances.

Query: A∗ search with landmarks using triangle inequality.

A∗ + Landmarks + Triangle inequality: ALT [GH05, GW05]

ALT Queries

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 26 / 123

Use triangle inequality for lower bounds:
I dist(v ,w) ≥ dist(A,w)− dist(A, v)
I dist(v ,w) ≥ dist(v ,A)− dist(w ,A)
I dist(v ,w) ≥ max{dist(A,w)− dist(A, v), dist(v ,A)− dist(w ,A)}.

More than one landmark: pick best (maximum) over all.
I more landmarks ⇒ better bounds, more memory

A good landmark appears “before” v or “after” w .

Northwestern USA

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 27 / 123

ALT: 16 landmarks, 4 (yellow) used for this search.

ALT: An Example

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 28 / 123

ALT:

ALT: Selecting Landmarks

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 29 / 123

A good landmark for an s–t query appears “before” s or “after” t.

We must pick landmarks that are OK for all queries.

Picking landmarks around the border seems reasonable.

Several techniques have been tested:
I random;
I planar;
I avoid;
I maxcover.

ALT: Planar Landmarks

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 30 / 123

The planar algorithm:

1 divide map into k equal-sized slices;
2 pick farthest vertex in each slice as a landmark

Works well only if map is well-shaped:
I not very good in practice.

ALT: Planar Landmarks

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 30 / 123

The planar algorithm:
1 divide map into k equal-sized slices;

2 pick farthest vertex in each slice as a landmark

Works well only if map is well-shaped:
I not very good in practice.

ALT: Planar Landmarks

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 30 / 123

The planar algorithm:
1 divide map into k equal-sized slices;
2 pick farthest vertex in each slice as a landmark

Works well only if map is well-shaped:
I not very good in practice.

ALT: Planar Landmarks

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 30 / 123

The planar algorithm:
1 divide map into k equal-sized slices;
2 pick farthest vertex in each slice as a landmark

Works well only if map is well-shaped:
I not very good in practice.

ALT: Avoid Landmarks

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 31 / 123

The avoid selection method (informally):
I adds one landmark at a time;
I prefers regions badly covered by previous landmarks.

To pick a new landmark (less informally):
1 pick a root r at random;
2 build the shortest path tree Tr from r ;
3 pick a subtree Tw of Tr such that:

F Tw does not contain a landmark;
F Tw has many vertices;
F for v ∈ Tw , existing landmarks give bad bounds on dist(r , v);

4 pick a leaf of Tw as the new landmark.

ALT: Avoid Landmarks

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 32 / 123

The avoid selection method (informally):
I adds one landmark at a time;
I prefers regions badly covered by previous landmarks.

To pick a new landmark (almost formally):
1 pick a root r at random;
2 build the shortest path tree Tr from r ;
3 define for each node v :

F LB(v): lower bound on dist(r , v) using landmarks already picked;
F weight(v): dist(r , v)− LB(v);
F size(v): sum of the weights of v ’s descendants in Tr

(or zero if there’s a landmark among the descendants).

4 let w be the vertex maximizing size(w);
5 starting at w , go down Tr following the maximum-sized child;
6 pick the leaf at the end of this path as the new landmark.

ALT: Landmark Generation

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 33 / 123

ALT algorithm on Europe with travel times, 16 landmarks:

METHOD PREP. SCANS

random 6 343440
avoid 12 84740

PREP.: preprocessing time in minutes.

SCANS: average number of scans for random queries.

ALT: Maxcover Landmarks

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 34 / 123

To pick 16 landmarks, generate 64 and pick the “best” 16:
I look for subset minimizing query times.

Measure quality of subset S based on individual arcs.
I Landmark L covers arc (v ,w) if v is on shortest path from L to w :

F Formally: `(v , w) = dist(L, w)− dist(L, v).
F Intuition: L gives lower bounds on paths containing (v , w).

I If one landmark in S covers (v ,w), then S covers (v ,w).

The maxcover landmark selection algorithm:
I Pick the subset that covers the most arcs.
I NP-hard, but local search works well.

ALT: Landmark Generation

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 35 / 123

ALT algorithm on Europe with travel times, 16 landmarks:

METHOD PREP. SCANS

random 6 343440
avoid 12 84740
maxcover 79 71508

Results

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 36 / 123

USA, travel times, random pairs [GKW09]:

PREPROCESSING QUERY

METHOD minutes MB scans ms
Dijkstra — 536 11 808 864 5440.49
ALT(16) 18 2563 187 968 295.44

1% of nodes visited on average, 10% in bad cases.

Can we do better?

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 37 / 123

Reach

Treasure Island

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 38 / 123

Intuition: don’t visit “local” roads when far from both s and t.
I Search from San Francisco to Oakland should not visit Treasure Island.

Reach

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 39 / 123

Let v be a vertex on the shortest path P between s and t:

v ts

Reach of v with respect to P:

r(v ,P) = min{dist(s, v), dist(v , t)}

Reach of v with respect to the whole graph:

r(v) = max
P

r(v ,P),

over all shortest paths P that contain v [Gut04].

Intuition:
I a high-reach vertex is close to the middle of some long shortest path;
I vertices on highways have high reach;
I local intersections have low reach.

Reach Queries

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 40 / 123

Reaches can prune the search during an s-t query.
I Intuition: don’t visit small-reach vertices when far from s and t.

When processing edge (v ,w):
I prune w if r(w) < min{d(s, v) + `(v ,w), LB(w , t)}:

LB(w,t)
d(s,v) wv

ts

I If P = (s, . . . , v ,w , . . . t) were a shortest path, r(w) would be higher.

How can we find the lower bound LB(w , t)?
I Explicitly: Euclidean distances [Gut04], landmarks.
I Implicitly: make the search bidirectional.

Reach Queries

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 41 / 123

Radius Rt of the opposite search is lower bound:
I if w not visited by reverse direction, d(w , t) ≥ Rt .

When processing edge (v ,w):
I prune w if r(w) < min{d(s, v) + `(v ,w),Rt}:

Rt

LB(w,t)
d(s,v) wv

ts

For best results, balance forward and reverse searches.

Northwestern USA

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 42 / 123

Reach:

Preprocessing: Computing Reaches

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 43 / 123

s

1 Initialization: set r(v)← 0, for all v ;
2 For every vertex s ∈ V :

I for each vertex v in shortest path tree Ts :
F take longest shortest path Pst containing v .
F ds(v) (depth): distance from s;
F hs(v) (height): distance to farthest descendant;
F rs(v) (reach within Ts) = min{ds(v), hs(v)}.
F set r(v)← max{r(v), rs(v)}.

Running time = n × Dijkstra
I Too slow: 12 hours on Bay Area (n = 330K), years on USA.

We need something faster!

Preprocessing: Computing Reaches

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 43 / 123

height(v)

depth(v)

v

s

1 Initialization: set r(v)← 0, for all v ;
2 For every vertex s ∈ V :

I for each vertex v in shortest path tree Ts :
F take longest shortest path Pst containing v .
F ds(v) (depth): distance from s;
F hs(v) (height): distance to farthest descendant;
F rs(v) (reach within Ts) = min{ds(v), hs(v)}.
F set r(v)← max{r(v), rs(v)}.

Running time = n × Dijkstra
I Too slow: 12 hours on Bay Area (n = 330K), years on USA.

We need something faster!

Preprocessing: Computing Reaches

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 43 / 123

height(w)

depth(w)

w

s

1 Initialization: set r(v)← 0, for all v ;
2 For every vertex s ∈ V :

I for each vertex v in shortest path tree Ts :
F take longest shortest path Pst containing v .
F ds(v) (depth): distance from s;
F hs(v) (height): distance to farthest descendant;
F rs(v) (reach within Ts) = min{ds(v), hs(v)}.
F set r(v)← max{r(v), rs(v)}.

Running time = n × Dijkstra
I Too slow: 12 hours on Bay Area (n = 330K), years on USA.

We need something faster!

Preprocessing: Computing Reaches

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 43 / 123

1 Initialization: set r(v)← 0, for all v ;
2 For every vertex s ∈ V :

I for each vertex v in shortest path tree Ts :
F take longest shortest path Pst containing v .
F ds(v) (depth): distance from s;
F hs(v) (height): distance to farthest descendant;
F rs(v) (reach within Ts) = min{ds(v), hs(v)}.
F set r(v)← max{r(v), rs(v)}.

Running time = n × Dijkstra
I Too slow: 12 hours on Bay Area (n = 330K), years on USA.

We need something faster!

Preprocessing: Computing Small Reaches

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 44 / 123

Suppose we only need to find vertices with small reach (< ε).

Fact: r(v) ≥ ε ⇒ there is a path P 3 v with r(v ,P) ≥ ε.

A shortest path Pst = (s, s ′, . . . , v , . . . , t ′, t) is ε-minimal w.r.t. v if
I dist(s, v) ≥ ε and dist(s ′, v) < ε;
I dist(v , t) ≥ ε and dist(v , t ′) < ε.

εε

tt’vs’s

Preprocessing: Computing Small Reaches

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 45 / 123

Fact: r(v) ≥ ε⇒ there is an ε-minimal path P 3 v with r(v ,P) ≥ ε.

Algorithm:
I compute reach bounds r ′(·) using only (all) ε-minimal paths;
I if r ′(v) < ε, the bound is correct (r(v) = r ′(v));
I if r ′(v) ≥ ε, we can say nothing (r(v) ≥ r ′(v)).

It suffices to consider partial trees:
I shortest path trees grown to depth about 2ε.

Preprocessing: Bounding Reaches

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 46 / 123

Algorithm:
1 Set G ′ ← G and ε← ε0 (some small value).
2 while G ′ is not empty:

F use partial trees to find vertices with reach ≥ ε;
F remove from G ′ the remaining vertices (their reach is < ε);
F set ε← 3ε.

Penalties

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 47 / 123

19

13

15

[80]

Problem: must consider shortest paths starting at discarded vertices.

Solution is to add penalties:
I upper bound on the length of longest path into “discarded” area.

When growing partial trees:
I “extend” all paths s–t using penalties at s and t.

Reaches are no longer exact!
I valid upper bounds r̄(·);
I query algorithm still correct;
I query performance slightly worse.

Penalties

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 47 / 123

95

93

99

Problem: must consider shortest paths starting at discarded vertices.

Solution is to add penalties:
I upper bound on the length of longest path into “discarded” area.

When growing partial trees:
I “extend” all paths s–t using penalties at s and t.

Reaches are no longer exact!
I valid upper bounds r̄(·);
I query algorithm still correct;
I query performance slightly worse.

Preprocessing: Bounding Reaches

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 48 / 123

Algorithm:
1 Set G ′ ← G and ε← ε0 (some small value).
2 while G ′ is not empty:

F use partial trees to find vertices with reach ≥ ε;
F remove from G ′ the remaining vertices (their reach is < ε);
F set ε← 3ε.

Preprocessing time:
I trees get deeper as ε increases;
I G ′ gets smaller: fewer trees than G , each with fewer vertices.

This helps somewhat, but not much:
I Small graph (n = 330K): 12h exact, 1h approximate.
I Still too slow for large graphs (weeks).

Reach with Shortcuts

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 49 / 123

Consider a sequence of vertices of degree two on the path below:

I they all have high reach.

Add a shortcut [SS05, SS06]:

I single edge bypassing a path (with same length).

Assume ties are broken by taking path with fewer nodes:

I some reaches are reduced!

More shortcuts can be added recursively.

10001000

1010101010101010
ts

Reach with Shortcuts

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 49 / 123

Consider a sequence of vertices of degree two on the path below:
I they all have high reach.

Add a shortcut [SS05, SS06]:

I single edge bypassing a path (with same length).

Assume ties are broken by taking path with fewer nodes:

I some reaches are reduced!

More shortcuts can be added recursively.

10001000

1010101010101010
100010101020103010401030102010101000 ts

Reach with Shortcuts

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 49 / 123

Consider a sequence of vertices of degree two on the path below:
I they all have high reach.

Add a shortcut [SS05, SS06]:
I single edge bypassing a path (with same length).

Assume ties are broken by taking path with fewer nodes:

I some reaches are reduced!

More shortcuts can be added recursively.

100010101020103010401030102010101000 ts

Reach with Shortcuts

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 49 / 123

Consider a sequence of vertices of degree two on the path below:
I they all have high reach.

Add a shortcut [SS05, SS06]:
I single edge bypassing a path (with same length).

Assume ties are broken by taking path with fewer nodes:

I some reaches are reduced!

More shortcuts can be added recursively.

10001000

1010101010101010

80

ts

Reach with Shortcuts

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 49 / 123

Consider a sequence of vertices of degree two on the path below:
I they all have high reach.

Add a shortcut [SS05, SS06]:
I single edge bypassing a path (with same length).

Assume ties are broken by taking path with fewer nodes:
I some reaches are reduced!

More shortcuts can be added recursively.

1000605040304050601000 ts

Reach with Shortcuts

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 49 / 123

Consider a sequence of vertices of degree two on the path below:
I they all have high reach.

Add a shortcut [SS05, SS06]:
I single edge bypassing a path (with same length).

Assume ties are broken by taking path with fewer nodes:
I some reaches are reduced!

More shortcuts can be added recursively.

1000201020302010201000 ts

Reach with Shortcuts

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 49 / 123

Consider a sequence of vertices of degree two on the path below:
I they all have high reach.

Add a shortcut [SS05, SS06]:
I single edge bypassing a path (with same length).

Assume ties are broken by taking path with fewer nodes:
I some reaches are reduced!

More shortcuts can be added recursively.

100001003001001000 ts

Reach with Shortcuts

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 50 / 123

7

14

12

17

v

c

b
a

Shorcuts are actually added heuristically during preprocessing:
I in each iteration, bypass some low-degree (≤ 4) vertices:

F neighbors connected directly by shortcuts;
F penalties added to the neighbors;
F bound the reach of eliminated vertex (below: r̄(v) = 7);

Reach with Shortcuts

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 50 / 123

21

19

24

31
26

29

c

b
a

7

14

12

17

v

c

b
a

Shorcuts are actually added heuristically during preprocessing:
I in each iteration, bypass some low-degree (≤ 4) vertices:

F neighbors connected directly by shortcuts;
F penalties added to the neighbors;
F bound the reach of eliminated vertex (below: r̄(v) = 7);

Reach with Shortcuts

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 51 / 123

Benefits of shortcuts:
I speeds up preprocessing (graph G ′ shrinks faster);
I speeds up queries (pruning more effective);
I requires slighly more space (graph has ∼ 50% more arcs).

Preprocessing: Bounding Reaches

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 52 / 123

Revised algorithm:
1 Set G ′ ← G and ε← ε0 (some small value).
2 while G ′ is not empty:

F add shortcuts;
F use partial trees to find vertices with reach ≥ ε;
F remove from G ′ the remaining vertices (their reach is < ε);
F set ε← 3ε.

Northwestern USA

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 53 / 123

Reach with shortcuts (RE):

Reach with Shortcuts

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 54 / 123

Reach with shortcuts (RE):

Engineering Reach

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 55 / 123

Preprocessing:
I keep in-penalties and out-penalties;
I compute arc reaches instead of vertex reaches;
I recompute the top reaches explicitly;
I careful stopping criterion when growing partial trees.
I relax criteria for shortcutting in later rounds.

Queries:
I rearrange vertices to improve locality;
I high-reach vertices together in memory;
I implicitly skip low-reach arcs out of each vertex.

Results

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 56 / 123

USA, travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes MB scans ms
Dijkstra — 536 11 808 864 5440.49
ALT(16) 18 2563 187 968 295.44
RE 28 893 2 405 1.77

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 57 / 123

Reach for A∗

REAL

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 58 / 123

A∗ search with landmarks can use reaches:
I A∗ gives direction to the search;
I reaches make the search space sparser.

Landmarks have dual purpose:
I guide the search;
I provide lower bound for reach pruning.

Northwestern USA

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 59 / 123

Reach + ALT (REAL):

REAL

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 60 / 123

REAL: Reach + ALT.

Results

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 61 / 123

USA, travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes MB scans ms
Dijkstra — 536 11 808 864 5440.49
ALT(16) 18 2563 187 968 295.44
RE 28 893 2 405 1.77
REAL(16) 45 3032 592 0.80

Partial Landmarks

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 62 / 123

Fact: search visits low-reach vertices only in the beginning.

Can lower memory usage as follows:
I store landmark distances only for vertices with reach ≥ R.
I start search without A∗ (only reaches);
I use A∗ (with reaches) when radii are greater than R.

Example: 64 landmarks, with distances to only n/16 top vertices:
I same memory as four “full” landmarks.

Results

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 63 / 123

USA, travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes MB scans ms
Dijkstra — 536 11 808 864 5440.49
ALT(16) 18 2563 187 968 295.44
RE 28 893 2 405 1.77
REAL(16) 45 3032 592 0.80
REAL(64,16) 114 1579 538 0.86

Other Graphs

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 64 / 123

Partial A∗ (REAL(64,16)), 1000 random pairs:

PREPROCESS QUERY

METHOD minutes MB avgscan ms
USA (times) 113 1579 538 0.86

USA (distances) 120 1575 670 1.22
Europe (times) 102 1037 610 0.91

Europe (distances) 76 1084 562 0.91

(Europe has 18.0 M vertices and 42.6 M arcs.)

Grids: A∗ is just as good, reaches not so much (no hierarchy).

Random graphs: both methods are useless.

Results

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 65 / 123

Europe (18M vertices), travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes B/node scans ms
Dijkstra — — 8 984 289 4365
ALT(16) 13 93 82 348 120.1
RE 45 38 4 371 3.06
REAL(16) 58 109 714 0.89
REAL(64,16) 75 60 610 0.91

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 66 / 123

Contraction Hierarchies

(CH)

Contraction Hierarchies: Preprocessing

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 67 / 123

2 3 2 1 2
2 6 1 3 54

CH Preprocessing [GSSD08]:
1 eliminate vertices one by one, in some order;

2 add shortcuts to preserve distances.

Invariant: distances between remaining vertices are preserved;
I last k vertices induce an overlay graph, for every k.

Output: augmented graph + node order.

Contraction Hierarchies: Preprocessing

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 67 / 123

2

3 2

1 2
2 6

1

4 3 5
5

CH Preprocessing [GSSD08]:
1 eliminate vertices one by one, in some order;
2 add shortcuts to preserve distances.

Invariant: distances between remaining vertices are preserved;
I last k vertices induce an overlay graph, for every k.

Output: augmented graph + node order.

Contraction Hierarchies: Preprocessing

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 67 / 123

2

1 2

2

6

1

4 3 5
5

3 2

CH Preprocessing [GSSD08]:
1 eliminate vertices one by one, in some order;
2 add shortcuts to preserve distances.

Invariant: distances between remaining vertices are preserved;
I last k vertices induce an overlay graph, for every k.

Output: augmented graph + node order.

Contraction Hierarchies: Preprocessing

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 67 / 123

2
1 2

2

6

1

4

3

5
5

3 2

3

CH Preprocessing [GSSD08]:
1 eliminate vertices one by one, in some order;
2 add shortcuts to preserve distances.

Invariant: distances between remaining vertices are preserved;
I last k vertices induce an overlay graph, for every k.

Output: augmented graph + node order.

Contraction Hierarchies: Preprocessing

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 67 / 123

2
2

2

6

1

4

3

5

3

2

3

8

1

5

CH Preprocessing [GSSD08]:
1 eliminate vertices one by one, in some order;
2 add shortcuts to preserve distances.

Invariant: distances between remaining vertices are preserved;
I last k vertices induce an overlay graph, for every k.

Output: augmented graph + node order.

Contraction Hierarchies: Preprocessing

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 67 / 123

2
1 2

2

6

1

4

3

5

3

3
5

8

2

CH Preprocessing [GSSD08]:
1 eliminate vertices one by one, in some order;
2 add shortcuts to preserve distances.

Invariant: distances between remaining vertices are preserved;
I last k vertices induce an overlay graph, for every k.

Output: augmented graph + node order.

Contraction Hierarchies: Query

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 68 / 123

2
1 2

2

6

1

4

3

5

3

3
5

8

s

t

n
o
d
e

o
rd

e
r

2

Bidirectional search following only upward arcs.

In general, several nodes will be visited by both searches:

I Shortest path uses the node minimizing the sum of its distance labels.

Contraction Hierarchies: Query

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 68 / 123

2
1 2

2

6

1

4

3

5

3

3
5

8

s

t

n
o
d
e

o
rd

e
r

2

Bidirectional search following only upward arcs.

In general, several nodes will be visited by both searches:

I Shortest path uses the node minimizing the sum of its distance labels.

Contraction Hierarchies: Query

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 68 / 123

2
1 2

2

6

1

4

3

5

3

3
5

8

s

t

n
o
d
e

o
rd

e
r

2

Bidirectional search following only upward arcs.

In general, several nodes will be visited by both searches:

I Shortest path uses the node minimizing the sum of its distance labels.

Contraction Hierarchies: Query

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 68 / 123

2
1 2

2

6

1

4

3

5

3

3
5

8

s

t

n
o
d
e

o
rd

e
r

2

Bidirectional search following only upward arcs.

In general, several nodes will be visited by both searches:
I Shortest path uses the node minimizing the sum of its distance labels.

Contraction Hierarchies: Correctness

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 69 / 123

2
1 2

2

6

1

4

3

5

3

3
5

8

s

t

n
o
d
e

o
rd

e
r

2

Distances are preserved by the augmented graph G+ = (V ,E+).

Claim: for every {s, t}, G+ has a shortest path Pst 3 v such that:
I the subpath Psv is increasing;
I the subpath Pvt is decreasing.

In other words, Pst has no interior local minima.

Forward search will find Psv , backward search will find Pvt .

Contraction Hierarchies: Witness Search

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 70 / 123

1

1

1
1

1
v

When bypassing v , for every two neighbors u and w :
I Add edge (u,w) with `(u,w) = `(u, v) + `(v ,w)...

I ...but only if there is no witness path Puw :
F length at most `(u, v) + `(v , w);
F does not contain v .

Must perform witness searches to find such paths:

I Dijkstra between neighbors;
I essential for good query performance;
I avoids explosion in the size of the graph;
I somewhat expensive:

F run when shortcutting;
F run when computing priorities.

Contraction Hierarchies: Witness Search

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 70 / 123

2

2

1

1

1
1

1
v

When bypassing v , for every two neighbors u and w :
I Add edge (u,w) with `(u,w) = `(u, v) + `(v ,w)...
I ...but only if there is no witness path Puw :

F length at most `(u, v) + `(v , w);
F does not contain v .

Must perform witness searches to find such paths:

I Dijkstra between neighbors;
I essential for good query performance;
I avoids explosion in the size of the graph;
I somewhat expensive:

F run when shortcutting;
F run when computing priorities.

Contraction Hierarchies: Witness Search

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 70 / 123

2

2

1

1

1
1

1
v

When bypassing v , for every two neighbors u and w :
I Add edge (u,w) with `(u,w) = `(u, v) + `(v ,w)...
I ...but only if there is no witness path Puw :

F length at most `(u, v) + `(v , w);
F does not contain v .

Must perform witness searches to find such paths:
I Dijkstra between neighbors;
I essential for good query performance;
I avoids explosion in the size of the graph;
I somewhat expensive:

F run when shortcutting;
F run when computing priorities.

Contraction Hierarchies: Correctness

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 71 / 123

Theorem

The augmented graph has a shortest s–t path with no interior local minima.

Take a SP P with local minima MP = {ui : ui−1 > ui < ui+1}; let uk = minMP ;

when uk was contracted, (uk−1, uk) and (uk , uk+1) were in the overlay graph;

either the edge e = (uk−1, uk+1) was added, or there was a witness path;

the subpath (uk−1, uk , uk+1) can be replaced:

I either MP becomes empty or minMP increases.

minMP can increase at most n times ⇒ MP is eventually empty.

Contraction Hierarchies: Representation

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 72 / 123

v

w

u

shortcut

stored at u

stored at w

n
o
d
e

o
rd

e
r

Each arc (a, b) stored only at min{a, b}:
I used by forward search (from a) if a < b;
I used by backward search (from b) if b < a.

Can save memory, particularly on undirected edges.
I stored twice for Dijkstra, once for CH.

Contraction Hierarchies: Elimination Order

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 73 / 123

Elimination order actually determined online.
I each candidate vertex has a priority;
I keep all vertices in a heap;
I neighbors updated after contraction.

Priority may depend on several terms:
I edge difference (removed − inserted).
I uniformity (nodes should be spread around the graph);
I cost of contraction (search spaces during witness search);
I · · ·

Any order is correct, but performance varies:
I space (number of shortcuts);
I preprocessing time;
I query times.

Contraction Hierarchies: Elimination Order

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 74 / 123

Europe (18M vertices), travel times, random pairs [GSSD08]:

PREPROCESSING QUERY

METHOD minutes B/node scans ms

CH(E) 245 −1.6 1791 0.67
CH(ES) 91 –3.5 614 0.24
CH(EDS1235) 10 0.6 459 0.22
CH(EVSQWL) 32 −3.0 359 0.15

Key:
I E: edge difference
I S: size of search space (cost of contraction)
I D: deleted neighbors (uniformity)
I 1235: hop limits on witness search
I EVSQWL: six different heuristic measures (see [GSSD08]).

Results

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 75 / 123

Europe (18M vertices), travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes B/node scans ms
Dijkstra — — 8984 289 4365
ALT(16) 13 93 82 348 120.1
RE 45 38 4 371 3.06
REAL(16) 58 109 714 0.89
REAL(64,16) 75 60 610 0.91
Contraction Hierarchies 25 −3 355 0.18

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 76 / 123

Arc Flags

Arc Flags

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 77 / 123

Originally Lauther [Lau04], later improved [MSS+06, HKMS09].

Preprocessing:
I partition graph into k regions;
I store a k-bit flag with each arc (v ,w):

F bit i indicates if there is a shortest path from v to region i using (v , w).

Query from s to t:
I set R ← region(t);
I run modified Dijkstra’s algorithm from s:

F when scanning v , skip arc (v , w) if ths R-th bit of its flag is 0
(arc (v , w) is not on any shortest path to region r).

1 1 1

1 1 1 1 1 1

1 1 11 0 0

100

1 101 1 0

Preprocessing: Arc Flags

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 78 / 123

0 00 0 00

0 00

0 00

0 00

0 010 010 00 0 01 0 10

Basic preprocessing algorithm:
1 Initialize all flags to 0.
2 Set self-region flags to 1.

3 For each node v :

1 let R ← region(v).
2 grow an incoming shortest path tree;
3 for each tree arc, set R-th bit to 1.

Cost: n × Dijkstra.

Preprocessing: Arc Flags

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 78 / 123

0 0

0 0 0 0

0 0

0 0 0 00

01 1101

1 1

1

11

Basic preprocessing algorithm:
1 Initialize all flags to 0.
2 Set self-region flags to 1.
3 For each node v :

1 let R ← region(v).
2 grow an incoming shortest path tree;
3 for each tree arc, set R-th bit to 1.

Cost: n × Dijkstra.

Preprocessing: Arc Flags

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 78 / 123

1 1 1

1 1 1 1 1 1

1 1 11 0 0

100

1 101 1 0

Basic preprocessing algorithm:
1 Initialize all flags to 0.
2 Set self-region flags to 1.
3 For each node v :

1 let R ← region(v).
2 grow an incoming shortest path tree;
3 for each tree arc, set R-th bit to 1.

Cost: n × Dijkstra.

Preprocessing: Arc Flags

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 78 / 123

1 1 1

1 1 1 1 1 1

1 1 11 0 0

100

1 101 1 0

Basic preprocessing algorithm:
1 Initialize all flags to 0.
2 Set self-region flags to 1.
3 For each node v :

1 let R ← region(v).
2 grow an incoming shortest path tree;
3 for each tree arc, set R-th bit to 1.

Cost: n × Dijkstra.

Preprocessing: Arc Flags

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 79 / 123

0 00 0 00

0 00

0 00

0 00

0 010 010 00 0 01 0 10

Faster preprocessing algorithm:
1 Initialize all flags to 0.
2 Set self-region flags to 1.
3 For each node v with an incoming boundary arc:

1 let R ← region(v).
2 grow an incoming shortest path tree;
3 for each tree arc, set R-th bit to 1.

Cost: (number of boundary nodes)×Dijkstra.
I can be accelerated in practice.

Preprocessing: Arc Flags

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 79 / 123

0 0

0 0 0 0

0 0

0 0 0 00

01 1101

1 1

1

11

Faster preprocessing algorithm:
1 Initialize all flags to 0.
2 Set self-region flags to 1.
3 For each node v with an incoming boundary arc:

1 let R ← region(v).
2 grow an incoming shortest path tree;
3 for each tree arc, set R-th bit to 1.

Cost: (number of boundary nodes)×Dijkstra.
I can be accelerated in practice.

Preprocessing: Arc Flags

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 79 / 123

0 0

0 0 0

0

0 0 00

1 1101

1 1

1

11

1

1

1

1

Faster preprocessing algorithm:
1 Initialize all flags to 0.
2 Set self-region flags to 1.
3 For each node v with an incoming boundary arc:

1 let R ← region(v).
2 grow an incoming shortest path tree;
3 for each tree arc, set R-th bit to 1.

Cost: (number of boundary nodes)×Dijkstra.
I can be accelerated in practice.

Preprocessing: Arc Flags

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 79 / 123

0 0

0 0 0

0

0 0 00

1 1101

1 1

1

11

1

1

1

1

Faster preprocessing algorithm:
1 Initialize all flags to 0.
2 Set self-region flags to 1.
3 For each node v with an incoming boundary arc:

1 let R ← region(v).
2 grow an incoming shortest path tree;
3 for each tree arc, set R-th bit to 1.

Cost: (number of boundary nodes)×Dijkstra.
I can be accelerated in practice.

Preprocessing: Arc Flags

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 79 / 123

0 0

0

00

1 1101

1 1

1

11

1

1

1

1

1

1

1

1

1

Faster preprocessing algorithm:
1 Initialize all flags to 0.
2 Set self-region flags to 1.
3 For each node v with an incoming boundary arc:

1 let R ← region(v).
2 grow an incoming shortest path tree;
3 for each tree arc, set R-th bit to 1.

Cost: (number of boundary nodes)×Dijkstra.
I can be accelerated in practice.

Preprocessing: Arc Flags

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 79 / 123

1 1 1

1 1 1 1 1 1

1 1 11 0 0

100

1 101 1 0

Faster preprocessing algorithm:
1 Initialize all flags to 0.
2 Set self-region flags to 1.
3 For each node v with an incoming boundary arc:

1 let R ← region(v).
2 grow an incoming shortest path tree;
3 for each tree arc, set R-th bit to 1.

Cost: (number of boundary nodes)×Dijkstra.
I can be accelerated in practice.

Preprocessing: Arc Flags

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 79 / 123

1 1 1

1 1 1 1 1 1

1 1 11 0 0

100

1 101 1 0

Faster preprocessing algorithm:
1 Initialize all flags to 0.
2 Set self-region flags to 1.
3 For each node v with an incoming boundary arc:

1 let R ← region(v).
2 grow an incoming shortest path tree;
3 for each tree arc, set R-th bit to 1.

Cost: (number of boundary nodes)×Dijkstra.
I can be accelerated in practice.

Arc Flags: Partitioning

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 80 / 123

Must partition the graph into regions.

Original suggestion [Lau04]: simple grid.

Better performance if regions:

I are roughly balanced in size;
I are connected;
I have few boundary arcs.

Several methods tried [MSS+06]:

I quad-trees;
I kd-trees;
I multiway cut.

Arc Flags: Partitioning

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 80 / 123

Must partition the graph into regions.

Original suggestion [Lau04]: simple grid.

Better performance if regions:
I are roughly balanced in size;
I are connected;
I have few boundary arcs.

Several methods tried [MSS+06]:

I quad-trees;
I kd-trees;
I multiway cut.

Arc Flags: Partitioning

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 80 / 123

Must partition the graph into regions.

Original suggestion [Lau04]: simple grid.

Better performance if regions:
I are roughly balanced in size;
I are connected;
I have few boundary arcs.

Several methods tried [MSS+06]:
I quad-trees;

I kd-trees;
I multiway cut.

Arc Flags: Partitioning

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 80 / 123

Must partition the graph into regions.

Original suggestion [Lau04]: simple grid.

Better performance if regions:
I are roughly balanced in size;
I are connected;
I have few boundary arcs.

Several methods tried [MSS+06]:
I quad-trees;
I kd-trees;

I multiway cut.

Arc Flags: Partitioning

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 80 / 123

Must partition the graph into regions.

Original suggestion [Lau04]: simple grid.

Better performance if regions:
I are roughly balanced in size;
I are connected;
I have few boundary arcs.

Several methods tried [MSS+06]:
I quad-trees;
I kd-trees;
I multiway cut.

Arc Flags: Compression

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 81 / 123

1 1 1

1 1 1 1 1 1

1 1 11 0 0

100

1 101 1 0

Fact: several arcs have the exact same k-bit flags.

Trick: keep a table with all different flags seen:

I each arc keeps index of a table entry;
I typical savings: 80%.

Can even merge some flags to save more space:

I still correct if some 0s become 1s.
I performance may suffer.

Arc Flags: Compression

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 81 / 123

1 1 0

1 1 1
1 10

100
1 0 0

Fact: several arcs have the exact same k-bit flags.

Trick: keep a table with all different flags seen:
I each arc keeps index of a table entry;
I typical savings: 80%.

Can even merge some flags to save more space:

I still correct if some 0s become 1s.
I performance may suffer.

Arc Flags: Compression

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 81 / 123

1 1 0

1 1 1
1 10

Fact: several arcs have the exact same k-bit flags.

Trick: keep a table with all different flags seen:
I each arc keeps index of a table entry;
I typical savings: 80%.

Can even merge some flags to save more space:
I still correct if some 0s become 1s.
I performance may suffer.

Arc Flags: Coning

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 82 / 123

The “problem of cones”:
I flags fail close to the destination;
I no pruning within target region.

Bidirectional arc flags are better:
I keep forward and reverse flags;
I double space and preprocessing time;
I searches meet far from source and destination!
I Europe, 128 regions [Del10]:

F unidirectional: 92 545 scans;
F bidirectional: 2 764 scans.

Also: use more regions.

Arc Flags: Coning

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 82 / 123

The “problem of cones”:
I flags fail close to the destination;
I no pruning within target region.

Bidirectional arc flags are better:
I keep forward and reverse flags;
I double space and preprocessing time;
I searches meet far from source and destination!
I Europe, 128 regions [Del10]:

F unidirectional: 92 545 scans;
F bidirectional: 2 764 scans.

Also: use more regions.

Arc Flags: Coning

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 82 / 123

The “problem of cones”:
I flags fail close to the destination;
I no pruning within target region.

Bidirectional arc flags are better:
I keep forward and reverse flags;
I double space and preprocessing time;
I searches meet far from source and destination!
I Europe, 128 regions [Del10]:

F unidirectional: 92 545 scans;
F bidirectional: 2 764 scans.

Also: use more regions.

Arc Flags: Number of Regions

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 83 / 123

Europe (18M vertices), travel times, random pairs [Hil07]:

PREPROCESSING QUERY

REGIONS minutes B/node scans ms
0 0 0 9 114 385 5591.6
200 1028 19 2369 1.6
600 1723 21 1700 1.1
1000 2156 25 1593 1.1

More regions:
I fewer vertices scanned, but...
I ...more space required.

Arc Flags: Results

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 84 / 123

Europe (18M vertices), travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes B/node scans ms
Dijkstra — — 8984 289 4365
ALT(16) 13 93 82 348 120.1
RE 45 38 4 371 3.06
REAL(16) 58 109 714 0.89
REAL(64,16) 75 60 610 0.91
Contraction Hierarchies 25 −3 355 0.18
Arc Flags 2156 25 1 593 1.10

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 85 / 123

SHARC

SHARC

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 86 / 123

Issues with arc flags:
I very expensive preprocessing;
I (unidirectional) queries could be faster.

Possible improvements [BD09]:
I contraction (shortcuts);
I multilevel flags.

SHARC: Tree Elimination

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 87 / 123

1 Before partition, remove attached trees:
I repeatedly remove vertices of degree 1 (about 1/3 of Europe);
I the remaining 2/3 are the core.

2 Compute partition and arc flags of the core.
3 Set flags on attached trees:

I arcs towards the core: all flags set to 1;
I arcs away from the core: only R-th bit set to 1.

F R: region containing the root of the attached tree.

SHARC: Tree Elimination

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 87 / 123

1 Before partition, remove attached trees:
I repeatedly remove vertices of degree 1 (about 1/3 of Europe);
I the remaining 2/3 are the core.

2 Compute partition and arc flags of the core.

3 Set flags on attached trees:
I arcs towards the core: all flags set to 1;
I arcs away from the core: only R-th bit set to 1.

F R: region containing the root of the attached tree.

SHARC: Tree Elimination

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 87 / 123

0001

0001

00011111
1111

1111

1 Before partition, remove attached trees:
I repeatedly remove vertices of degree 1 (about 1/3 of Europe);
I the remaining 2/3 are the core.

2 Compute partition and arc flags of the core.
3 Set flags on attached trees:

I arcs towards the core: all flags set to 1;
I arcs away from the core: only R-th bit set to 1.

F R: region containing the root of the attached tree.

SHARC: Contraction

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 88 / 123

1111

1111 1111

1111 0010

0010

Idea can be generalized for arbitrary contractions:
1 add shortcuts to bypass a contracted component;

F arcs entering the component have only own-region bit set;
F all other arcs are set to 1.

2 compute arc flags of the core.
3 further refinement of component flags is possible.

SHARC: Contraction

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 88 / 123

1111

1111 1111

1111 0010

0010

0011

11000011

0011

1100

Idea can be generalized for arbitrary contractions:
1 add shortcuts to bypass a contracted component;

F arcs entering the component have only own-region bit set;
F all other arcs are set to 1.

2 compute arc flags of the core.

3 further refinement of component flags is possible.

SHARC: Contraction

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 88 / 123

1111

1111 1111

1111 0010

0010

0011

11000011

0011

1100

Idea can be generalized for arbitrary contractions:
1 add shortcuts to bypass a contracted component;

F arcs entering the component have only own-region bit set;
F all other arcs are set to 1.

2 compute arc flags of the core.
3 further refinement of component flags is possible.

SHARC: Multilevel Flags

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 89 / 123

Compute multilevel partition:

I cells (region) at level i subdivide cells at i + 1.

When query looks at (v ,w):
I use flags for highest level i with celli (v) 6= celli (t);

Advantages:
I performance: bottom-level cells are tiny.
I saves space: level-i flags defined only for cells with same parent.

SHARC: Multilevel Flags

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 89 / 123

Compute multilevel partition:
I cells (region) at level i subdivide cells at i + 1.

When query looks at (v ,w):
I use flags for highest level i with celli (v) 6= celli (t);

Advantages:
I performance: bottom-level cells are tiny.
I saves space: level-i flags defined only for cells with same parent.

SHARC: Multilevel Flags

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 89 / 123

Compute multilevel partition:
I cells (region) at level i subdivide cells at i + 1.

When query looks at (v ,w):
I use flags for highest level i with celli (v) 6= celli (t);

Advantages:
I performance: bottom-level cells are tiny.
I saves space: level-i flags defined only for cells with same parent.

SHARC: Multilevel Flags

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 89 / 123

Compute multilevel partition:
I cells (region) at level i subdivide cells at i + 1.

When query looks at (v ,w):
I use flags for highest level i with celli (v) 6= celli (t);

Advantages:
I performance: bottom-level cells are tiny.
I saves space: level-i flags defined only for cells with same parent.

SHARC: Multilevel Flags

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 89 / 123

Compute multilevel partition:
I cells (region) at level i subdivide cells at i + 1.

When query looks at (v ,w):
I use flags for highest level i with celli (v) 6= celli (t);

Advantages:
I performance: bottom-level cells are tiny.
I saves space: level-i flags defined only for cells with same parent.

SHARC: Multilevel Flags

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 89 / 123

Compute multilevel partition:
I cells (region) at level i subdivide cells at i + 1.

When query looks at (v ,w):
I use flags for highest level i with celli (v) 6= celli (t);

Advantages:
I performance: bottom-level cells are tiny.
I saves space: level-i flags defined only for cells with same parent.

SHARC

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 90 / 123

SHARC [BD09]: SHortcuts + ARC flags.

Preprocessing:
1 Build multilevel partition.
2 For each level 0 . . . L:

F perform contractions within each cell;
F compute appropriate arc flags.

Query: similar to arc flags, on graph with shortcuts.

Unidirectional!

SHARC: Tuning

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 91 / 123

Unidirectional SHARC queries:

partition Prepro Query
time space #settled time

#cells per level #total cells [h:m] [B/n] nodes [µs]
- - - - - - - 128 128 1:52 6.0 78 429 23 306
- - - - - - 8 120 960 1:14 9.8 11 362 3 049
- - - - - 4 8 116 3 712 1:25 10.8 3 459 983
- - - - 4 4 8 112 14 336 1:14 11.6 1 320 441
- - - 4 4 8 8 104 106 496 1:18 13.7 700 294
- - 4 4 4 4 8 104 212 992 1:21 14.5 654 290
- 4 4 4 4 8 8 96 1 572 864 1:46 19.3 637 294
4 4 4 4 4 4 8 96 3 145 728 1:56 20.0 627 293

Can be made bidirectional:
I best performace with two levels;
I double preprocessing time;
I queries about 5 times faster.

Results

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 92 / 123

Europe (18M vertices), travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes B/node scans ms
Dijkstra — — 8984 289 4365
ALT(16) 13 93 82 348 120.1
RE 45 38 4 371 3.06
REAL(16) 58 109 714 0.89
REAL(64,16) 75 60 610 0.91
Contraction Hierarchies 25 −3 355 0.18
Arc Flags 2156 25 1 593 1.10
SHARC (uni) 81 15 654 0.29
SHARC (bi) 212 21 125 0.065

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 93 / 123

CHASE

CHASE

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 94 / 123

CHASE [BDS+08, BDS+10]: Contraction Hierarchies + Arc Flags.

Preprocessing:
1 Run CH preprocessing to create G ′.
2 Partition G ′ into k regions.
3 Compute arc flags for all arcs in G ′.

Query is bidirectional Dijkstra, double-pruned:
I CH: only follow arcs going “up” in the hierarchy;
I Arc flags: only follow arcs on a shortest path to the target region.

Practical improvement:
I compute flags only for arcs between the top 5% vertices;
I much faster preprocessing, query times barely affected.

Results

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 95 / 123

Europe (18M vertices), travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes B/node scans ms
Dijkstra — — 8984 289 4365
ALT(16) 13 93 82 348 120.1
RE 45 38 4 371 3.06
REAL(16) 58 109 714 0.89
REAL(64,16) 75 60 610 0.91
Contraction Hierarchies 25 −3 355 0.18
Arc Flags 2156 25 1 593 1.10
SHARC (uni) 81 15 654 0.29
SHARC (bi) 212 21 125 0.065
CHASE 99 12 45 0.017

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 96 / 123

Transit-Node Routing

(TNR)

Transit Nodes

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 97 / 123

Intuition: when driving “far away” from a small region (on a shortest
path), you must pass through one of very few access roads.

Transit Nodes

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 98 / 123

[BFM+07]

USA has small (∼ 10 000) set T of transit nodes s.t. [BFM+07]:
I the shortest path between any two “far away” nodes passes through T :

F path has at least one node (vertex) from T ;

I there are very few ways of driving “far away” from any vertex s:
F v is an access node for s if it’s the first node in T on a long shortest

path from s;
F on average, any vertex s has about 10 access nodes.

Transit Node Routing

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 99 / 123

s t

distances between access node

access node

transit nodes

Preprocessing:
I find set of transit nodes T ⊂ V ;
I store full |T | × |T | distance table;

I for every node v , store distances v to
−→
A (v) and from

←−
A (t):

F forward and backward access nodes.

Query from s to t:

I if s and t are “sufficiently far,” do |
−→
A (s)| × |

←−
A (t)| table lookups;

F dist(s, t) = min{dist(s, u)+ dist(u, v)+ dist(v , t) : u ∈
−→
A (s), v ∈

←−
A (t)}

I otherwise, use another algorithm (e.g., CH).

Transit Nodes: Grid Implementation

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 100 / 123

[BFM+07]

Use a k × k grid to partition the graph.

Define two squares centered at each cell C :
I inner (5× 5) and outer (9× 9).

Access nodes for C : vertices in B5 on shortest paths from B1 to B9.
I Bi : boundary vertex of i × i square centered at C .

Transit Nodes: Grid Implementation

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 101 / 123

[BFM+07]

Query algorithm:
I If s and t are > 4 cells apart, do table lookups.
I Otherwise, do simplified reach-pruned Dijkstra.

Transit Nodes: Grid Implemtation

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 102 / 123

USA graph [BFM+07]:

grid global prep. time
size |T | |A(v)| queries (minutes)

64× 64 2 042 11.4 91.7% 498
128× 128 7 426 11.4 97.4% 525
256× 256 24 899 10.6 99.2% 638
512× 512 89 382 9.7 99.8% 859

1024× 1024 351 484 9.1 99.9% 964

Tuned algorithm:
I Two levels (top with 128× 128, bottom with 256× 256).

F bottom (hash) table only stores distances not covered by top table.

I with some compression techniques, needs 21 bytes/node.
I queries: 12 µs global (99%), 5112 µs local (1%).
I average: 63µs

Transit Nodes: Hierarchical Version

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 103 / 123

[BFM+07]

1 Perform hierarchy-based preprocessing (e.g., CH).
2 Pick ∼10 000 most important nodes as transit nodes;

I compute distance table for them.

3 Store with each vertex v ∈ V :
I
−→
A (v) and

←−
A (v) (forward and reverse access nodes):

F run CH searches from v to find them;

I radius(v): (Euclidean) distance to farthest access node.

Transit Nodes: Hierarchical Version

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 104 / 123

Query from s to t: check locality first.

Let geo(s, t) = Euclidean distance between s and t.

I radius(s) + radius(t) ≤ geo(s, t): run CH query.
I radius(s) + radius(t) > geo(s, t): do table lookups.

Engineering: use three levels for best peformance.

Transit Nodes: Hierarchical Version

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 104 / 123

s
u

t

Query from s to t: check locality first.

Let geo(s, t) = Euclidean distance between s and t.
I radius(s) + radius(t) ≤ geo(s, t): run CH query.

I radius(s) + radius(t) > geo(s, t): do table lookups.

Engineering: use three levels for best peformance.

Transit Nodes: Hierarchical Version

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 104 / 123

s t

distances between access node

access node

transit nodes

Query from s to t: check locality first.

Let geo(s, t) = Euclidean distance between s and t.
I radius(s) + radius(t) ≤ geo(s, t): run CH query.
I radius(s) + radius(t) > geo(s, t): do table lookups.

Engineering: use three levels for best peformance.

Transit Nodes: Hierarchical Version

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 104 / 123

Query from s to t: check locality first.

Let geo(s, t) = Euclidean distance between s and t.
I radius(s) + radius(t) ≤ geo(s, t): run CH query.
I radius(s) + radius(t) > geo(s, t): do table lookups.

Engineering: use three levels for best peformance.

Results

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 105 / 123

Europe (18M vertices), travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes B/node scans ms
Dijkstra — — 8984 289 4365
ALT(16) 13 93 82 348 120.1
RE 45 38 4 371 3.06
REAL(16) 58 109 714 0.89
REAL(64,16) 75 60 610 0.91
Contraction Hierarchies 25 −3 355 0.18
Arc Flags 2156 25 1 593 1.10
SHARC (uni) 81 15 654 0.29
SHARC (bi) 212 21 125 0.065
CHASE 99 12 45 0.017
Transit Node Routing 112 204 — 0.003

TNR+AF

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 106 / 123

TNR considers
−→
A (s)×

←−
A (t) table entries:

I no directionality!

TNR+AF [BDS+08, BDS+10]:
I Perform TNR preprocessing, find transit nodes T .
I Partition overlay graph GT = (T ,ET) into k regions.

I Compute k-bit flags on the arcs (s, u), for all s ∈ V and u ∈
−→
A (s).

F R-th bit is 1 if there is a shortest path from s to R through u;
F same for reverse direction.

Query only looks at relevant entries.

Lookups on Europe: 40.9→ 3.1.

TNR+AF

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 106 / 123

TNR considers
−→
A (s)×

←−
A (t) table entries:

I no directionality!

TNR+AF [BDS+08, BDS+10]:
I Perform TNR preprocessing, find transit nodes T .
I Partition overlay graph GT = (T ,ET) into k regions.

I Compute k-bit flags on the arcs (s, u), for all s ∈ V and u ∈
−→
A (s).

F R-th bit is 1 if there is a shortest path from s to R through u;
F same for reverse direction.

Query only looks at relevant entries.

Lookups on Europe: 40.9→ 3.1.

s

t
1 2
3 4

0101

fs = 0001

ft = 1010

1100

0001

01010101

1111
1011

1010

f→s,u(x) 0011
region x 4321

TNR+AF

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 106 / 123

TNR considers
−→
A (s)×

←−
A (t) table entries:

I no directionality!

TNR+AF [BDS+08, BDS+10]:
I Perform TNR preprocessing, find transit nodes T .
I Partition overlay graph GT = (T ,ET) into k regions.

I Compute k-bit flags on the arcs (s, u), for all s ∈ V and u ∈
−→
A (s).

F R-th bit is 1 if there is a shortest path from s to R through u;
F same for reverse direction.

Query only looks at relevant entries.

Lookups on Europe: 40.9→ 3.1.
s

t
1 2
3 4

0101

fs = 0001

ft = 1010

1100

0001

01010101

1111
1011

1010

f→s,u(x) 0011
region x 4321

Results

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 107 / 123

Europe (18M vertices), travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes B/node scans ms
Dijkstra — — 8984 289 4365
ALT(16) 13 93 82 348 120.1
RE 45 38 4 371 3.06
REAL(16) 58 109 714 0.89
REAL(64,16) 75 60 610 0.91
Contraction Hierarchies 25 −3 355 0.18
Arc Flags 2156 25 1 593 1.10
SHARC (uni) 81 15 654 0.29
SHARC (bi) 212 21 125 0.065
CHASE 99 12 45 0.017
Transit Node Routing 112 204 — 0.003
TNR + Arc Flags 229 321 — 0.002

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 108 / 123

Highway Dimension

Highway Dimension

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 109 / 123

All these algorithms work well on road networks. Why?

Intuitively, road networks have nice properties:
I natural hierarchy (few verticess/arcs are really important);
I small number of access nodes.

We can try to formalize this.

Assumptions [AFGW10]:
I undirected graph G = (V ,E) with |V | = n and |E | = m;
I positive, integer arc lengths;
I diameter D;
I constant maximum degree.

Highway Dimension

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 110 / 123

Bu,d : ball of radius d around u (i.e., all v with dist(u, v) ≤ d).

P(v ,w): shortest path between v and w .

Definition

The highway dimension of G = (V ,E) is the smallest h such that:

for every distance r > 0 and vertex u ∈ V , there exists a set S s.t.:
I |S | ≤ h (S is small); and
I S ⊆ Bu,4r (S is a subset of a ball); and
I S hits every shortest path P(v ,w) ⊆ Bu,4r with |P(v ,w)| > r .

In English

For any vertex u and any distance r , there are h vertices that “hit” every
long (> r) shortest path belonging to the ball of radius 4r around u.

Highway Dimension

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 111 / 123

Shortest Path Cover (SPC)

A set of vertices C is an (r , k)-SPC of G = (V ,E) iff:

C hits every shortest path P with r < |P| ≤ 2r in G ; and

|C ∩ Bu,2r | ≤ k for every u ∈ V .

Theorem

If G has highway dimension h, there exists an (r , h)-SPC for any r .

Can find (r ,O(h log n))-SPC in polynomial time.

Will assume we can find (r , h)-SPCs for simplicity.

Preprocessing Algorithm

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 112 / 123

1 Pick a series of log D SPCs:
I S0 = V ;
I Si is an (2i , h)-SPC, for i > 0.

2 Define level(v) = i iff v ∈ Si but not higher.
I “important” nodes have higher levels;
I at most log D levels.

3 Perform CH-like preprocessing:
I contract level 0, then level 1, ..., then level log D.
I arbitrary order within each level.

Theorem

This algorithm produces a graph G+ = (V ,E ∪ E+) with maximum degree
O(h log D).

Analysing Reach

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 113 / 123

Lemma

If v has level i , then reach(v) ≤ 2i+1 in G+.

If reach(v) > 2i+1, there would be a shortest path Psvt s.t.:
I `(Psv) ≥ 2i+1

I `(Pvt) ≥ 2i+1

Both subpaths have nodes at level i + 1; call them u and w .

During preprocessing, v was eliminated before u and w .

There would be a shortcut (u,w) bypassing v .
I shortest s–t path would use it.

Other Algorithms

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 114 / 123

Theorem

A reach-pruned query on G+ takes O((h log D)2) time.

A vertex v of reach 2i+1 is only scanned if v ∈ Bs,2·2i .

Si is a (2i , h)-SPC: there are at most O(h) such vertices.

O(h log D) total scans, each with O(h log D) degree.

The same bound holds for CH.

Can prove a bound of O(h log D) for a variant of TNR.

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 115 / 123

Extensions

Many-to-Many Computation

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 116 / 123

Many-to-many shortest path problem:
I Input: Weighted graph G = (V ,A), two sets S ⊆ V and T ⊆ V .
I Output: |S | × |T | distance table (from each s ∈ S to each t ∈ T).

Possible solutions:
I run Dijkstra’s algorithm |S | times;
I run |S | · |T | point-to-point queries.
I can one do better?

Many-to-Many Computation: Algorithm

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 117 / 123

1 Run CH (or similar) preprocessing [KSS+07].

2 Set D[s, t]←∞ for all (s, t) ∈ S × T
3 Compute backward CH searches for each target t ∈ T :

I a few hundred nodes visited for each t;
I store search spaces as triples (v , t, dist(v , t));

4 Partition triples into buckets:
I bucket B(v) has all triples of the form (v , ·, ·).

5 Compute forward CH searches from each source s ∈ S :
I When scanning v , check all triples (v , t, dist(v , t)) in B(v):

F set D[s, t]← min{dist(s, t), dist(s, v) + dist(v , t)}.

Many-to-Many Computation: Results

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 118 / 123

Random 104 × 104 table [GSSD08].
I Dijkstra× 104 (full trees): ∼14 hours.
I CH× 108 (point-to-point): ∼5 hours.
I Many-to-many with CH: 10.2 seconds;

F plus preprocessing.

External Memory

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 119 / 123

Implementations on portable devices [GW05, SSV08].

Basic idea:
I keep immutable (preprocessed) data on flash/disk;

F bring relevant parts to RAM as needed;

I mutable data (distance labels, heaps, . . .) kept in RAM.

Must minimize data transfer:
I rearrange data;
I compress data;
I create well-defined blocks.

CH has good performance:
I Europe: 140 MB of flash, 69 ms query (330MHz ARM).

Handling Traffic: Dynamic Graphs

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 120 / 123

Traffic: some edge weights increase temporarily.

Shortest paths change in arbitrary ways.

Solutions:
1 Rerun full preprocessing algorithm.
2 Rerun partial preprocessing algorithm:

F ALT: keep landmarks, recompute distances.
F CH: keep node ordering, recompute shortcuts.

3 Keep preprocessing, more effort at query time:
F ALT: lower bounds are still lower bounds (but worse).
F CH: allow “down” moves close to changed edges.

Time-Dependent Routing

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 121 / 123

Lengths `(v ,w , τ) are functions of time:
I how long it takes to traverse the edge if arriving at time τ ;
I usually piecewise linear.

Dijkstra works if FIFO (non-overtaking) property holds:
I If B leaves after A, B cannot arrive before A.

Problem for acceleration techniques:
I Cannot do simple bidirectional search:

F unknown arrival time!
F there are workarounds.

I (Unidirectional) SHARC-based algorithm works
well [Del09].

Acknowledgements

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 122 / 123

Several pictures in this presentation were created by
researchers at the University of Karlsruhe. Special thanks
to Daniel Delling and Peter Sanders for allowing their use.

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 123 / 123

References

I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck.

Highway dimension, shortest paths, and provably efficient algorithms.
In Proc. 21st SODA, pages 782–793, 2010.

R. Bauer and D. Delling.

SHARC: Fast and robust unidirectional routing.
ACM Journal of Experimental Algorithmics, 14:2.4, 2009.

R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wagner.

Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithm.
In C. C. McGeoch, editor, Proc. 7th WEA, volume 5038 of LNCS, pages 303–318. Springer, June 2008.

R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wagner.

Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithm.
ACM Journal of Experimental Algorithmics, 15:2.3, 2010.

H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes.

In Transit to Constant Shortest-Path Queries in Road Networks.
In Proc. 9th ALENEX, pages 46–59. SIAM, 2007.

D. Delling.

Time-dependent SHARC-routing.
Algorithmica, July 2009.

D. Delling, 2010.

Personal Communication.

A. V. Goldberg and C. Harrelson.

Computing the shortest path: A∗ search meets graph theory.
In Proc. 16th SODA, pages 156–165, 2005.

A. V. Goldberg, H. Kaplan, and R. F. Werneck.

Reach for A∗: Efficient point-to-point shortest path algorithms.
In Proc. 8th ALENEX, pages 129–143. SIAM, 2006.

A. V. Goldberg, H. Kaplan, and R. F. Werneck.

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 123 / 123

Reach for A∗: Shortest path algorithms with preprocessing.
In C. Demetrescu, A. V. Goldberg, and D. S. Johnson, editors, The Shortest Path Problem: Ninth DIMACS
Implementation Challenge, volume 74 of DIMACS, pages 93–140. AMS, 2009.

A. V. Goldberg.

A practical shortest path algorithm with linear expected time.
SIAM J. Computing, 37:1637–1655, 2008.

R. Geisberger, P. Sanders, D. Schultes, and D. Delling.

Contraction hierarchies: Faster and simpler hierarchical routing in road networks.
In C. C. McGeoch, editor, Proc. 7th WEA, volume 5038 of LNCS, pages 319–333. Springer, 2008.

R. J. Gutman.

Reach-based routing: A new approach to shortest path algorithms optimized for road networks.
In Proc. 6th ALENEX, pages 100–111. SIAM, 2004.

A. V. Goldberg and R. F. Werneck.

Computing point-to-point shortest paths from external memory.
In Proc. 7th ALENEX, pages 26–40. SIAM, 2005.

M. Hilger.

Accelerating point-to-point shortest path computations in large scale networks.
Master’s thesis, Technische Universität Berlin, 2007.

M. Hilger, E. Köhler, R. H. Möhring, and H. Schilling.

Fast point-to-point shortest path computations with arc-flags.
In C. Demetrescu, A. V. Goldberg, and D. S. Johnson, editors, The Shortest Path Problem: Ninth DIMACS
Implementation Challenge, volume 74 of DIMACS, pages 41–72. AMS, 2009.

T. Ikeda, Min-Yao Hsu, H. Imai, S. Nishimura, H. Shimoura, T. Hashimoto, K. Tenmoku, and K. Mitoh.

A fast algorithm for finding better routes by AI search techniques.
In Proc. Vehicle Navigation and Information Systems Conference, pages 2037–2044. IEEE, 1994.

S. Knopp, P. Sanders, D. Schultes, F. Schulz, and D. Wagner.

Computing many-to-many shortest paths using highway hierarchies.
In Proc. 9th ALENEX, pages 36–45. SIAM, 2007.

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 123 / 123

U. Lauther.

An extremely fast, exact algorithm for finding shortest paths in static networks with geographical background.
In Geoinformation und Mobilität - von der Forschung zur praktischen Anwendung, volume 22, pages 219–230. IfGI prints,
2004.

R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and T. Willhalm.

Partitioning graphs to speedup dijkstra’s algorithm.
ACM Journal of Experimental Algorithmics, 11:2.8, 2006.

P. Sanders and D. Schultes.

Highway Hierarchies Hasten Exact Shortest Path Queries.
In Proc. 13th ESA, volume 3669 of LNCS, pages 568–579. Springer, 2005.

P. Sanders and D. Schultes.

Engineering Highway Hierarchies.
In Proc. 14th ESA, LNCS, pages 804–816. Springer, 2006.

P. Sanders, D. Schultes, and C. Vetter.

Mobile Route Planning.
In Proc. 16th ESA, volume 5193 of LNCS, pages 732–743. Springer, September 2008.

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 123 / 123

