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The Shortest Path Problem
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Input:
I directed graph G = (V ,A);
I arc lengths `(v ,w) ≥ 0;
I |V | = n, |A| = m;
I source s, target t.

Goal: find shortest path from s to t.
I its length is denoted by dist(s, t).

Our focus is on road networks:
I V : intersections;
I A: road segments;
I `(·, ·): typically travel times.



Outline
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1 Dijkstra’s algorithm

2 Basic data structures
3 Acceleration techniques:

I A∗ search and landmarks
I reach-based routing
I contraction hierarchies
I arc flags
I transit node routing

4 Highway dimension



Test Instance: USA Road Network
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n = 24M vertices, m = 58M arcs.

Arc lengths represent travel times.



Test Instance: Northwestern USA
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n = 1.65M vertices, m = 3.78M arcs [GKW06];

Arc lengths represent travel times.



Dijkstra’s Algorithm
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Intuition:
I process vertices in increasing order of distance from the source;
I stop when reaching the target.



Northwestern USA
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Dijkstra’s algorithm:



Dijkstra’s Algorithm
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foreach (v ∈ V ) d [v ]←∞;
d [s]← 0;
Q.Insert(s, 0); // Q: priority queue
while (!Q.IsEmpty()) {

v ← Q.ExtractMin(); // v has smallest distance label
foreach (v ,w){ // scan vertex v

if (d [w ] > d [v ] + `(v ,w)){ // found better path to w?
d [w ]← d [v ] + `(v ,w);
if (w ∈ Q) then Q.DecreaseKey(w , d [w ]);
else Q.Insert(w , d [w ]);

}
}

}



Dijkstra’s Algorithm: Analysis
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Correctness:
I we always take unscanned vertex with minimum d(v);
I edge lengths are nonnegative ⇒ d(v) is exact (cannot be improved).

Running time depends on priority queue operations:
I O(n) Insert;
I O(n) ExtractMin;
I O(m) DecreaseKey (one per arc).

O(m + n log n) total time with Fibonacci heaps:
I O(log n) time for ExtractMin;
I O(1) for Insert and DecreaseKey.



Dijkstra’s Algorithm: d -heaps
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Binary heaps are good enough:
I O(log n) time per operation:
I O(m log n) time in total;
I simpler than Fibonacci, often faster in practice.

Road networks: m = O(n) (almost planar).

4-heaps often work better:
I similar to binary heaps, but each element has 4 children;
I fewer levels, more elements per level;
I better locality.



Dijkstra’s Algorithm: Data Structures
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Dijkstra’s algorithm on Europe with travel times:

DATA STRUCTURE SECONDS

2-heap (binary) 12.38
4-heap 11.53
8-heap 11.52

(Times on 2.4-GHz AMD Opteron with 16 MB of RAM.)

Times are for building full trees:
I about half for random s–t queries;
I stop when t is about to be scanned.



Dijkstra’s Algorithm: Multi-level Buckets
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Multi-level buckets (MLB):
I put elements in buckets according to their values;
I keep most elements in “wide” buckets (range of values);
I first nonempty “wide” bucket split into “narrow” buckets as needed;
I always remove from narrowest buckets;

F assumes ExtractMin is monotonic, as in Dijkstra’s algorithm.

4–7 8–11 12–15
0 1 2 3

The caliber acceleration for Dijkstra [Gol08]:
I caliber(v): minimum incoming edge of v ;
I Let x be the latest vertex scanned by the algorithm;
I Fact: if d(v) < d(x) + caliber(v), d(v) is exact.

F safe to scan v , even if not yet minimum!

I MLB saves operations by identifying such vertices early.
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Dijkstra’s algorithm on Europe with travel times:

DATA STRUCTURE SECONDS

2-heap (binary) 12.38
4-heap 11.53
8-heap 11.52
multi-level buckets 9.36
multi-level buckets + caliber 8.04

Little hope for much better data structures:
I MLB+caliber is within a factor of 2.5 of BFS [Gol08].



Bidirectional Dijkstra
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Bidirectional Dijkstra:
I run forward Dijkstra from s with distance labels df (v);
I run reverse Dijkstra from t with distance labels dr (v).
I alternate in any way.

Keep track of best path µ seen so far:
I path minimizing df (v) + `(v ,w) + dr (w).

Stop when some vertex x is about to be scanned twice.
I return µ.



Northwestern USA
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Bidirectional Dijkstra:



USA Map
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Bidirectional Dijkstra:



Two-Stage Algorithms
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On road networks:
I Bidirectional Dijkstra only twice as fast as Dijkstra;
I we would like to do (much) better.

We consider two-stage algorithms:
I Preprocessing:

F executed once for each graph;
F may take a lot of time;
F outputs some auxiliary data.

I Query:
F may use the preprocessed data;
F executed once for each (s,t) pairs;
F should be very fast (real time).



Two-Stage Algorithms
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Running Dijkstra:
I preprocessing: do nothing;
I query: run Dijkstra.

Full precomputation:
I preprocessing: compute n × n distance table:

F time: n × Dijkstra (Europe: about 5 years);
F space: n × n distance table (Europe: about 1 petabyte);

I query: one table lookup.

Both cases are too extreme.



Two-Stage Algorithms
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We want something in between:
I preprocessing in minutes/hours;
I linear amount of preprocessed data;
I queries in real time.

Lots of research in the past decade:
I algorithm engineering;
I we’ll study the main ideas.
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A∗ Search



A∗ Search
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Take any potential function π(v) mapping vertices to reals.

It defines a reduced cost for each arc:
I `π(v ,w) = `(v ,w)− π(v) + π(w);

Fact: replacing ` by `π does not change shortest paths.
I Take any path P = (s = v0, v1, v2, v3, . . . , vk , t = vk+1):

`π(P) = `π(s, v1) + `π(v1, v2) + `π(v2, v3) + . . . + `π(vk , vt)

= `(s, v1)− π(s) + π(v1) +

`(v1, v2)− π(v1) + π(v2) +

`(v2, v3)− π(v2) + π(v3) +

. . . +

`(vk , t)− π(vk) + π(t)

= `(P)− π(s) + π(t)

I lengths of all s–t paths change by same amount (−π(s) + π(t)).



A∗ Search
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A∗ search ≡ Dijkstra on graph Gπ:
I same as G , with `(·, ·) replaced by reduced cost `π(·, ·).
I on each step, picks v minimizing `(Psv )− π(s) + π(v).
I π(s) is the same for all v !

Equivalent: use `(·, ·), scanning most promising vertices first:
I increasing order of k(v) = d(v) + π(v).
I k(v): estimated length of shortest s–t path through v .
I d(v): estimate on dist(s, v);
I π(v): estimate on dist(v , t).

Correctness requires `π ≥ 0:
I potential function is feasible;
I gives lower bounds if π(t) ≤ 0.

Effect: goal-directed search.



A∗ Search: Performance
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π(v) gives lower bounds on dist(v , t).

Performance:
I Worst case: π(v) = 0 for all v (same as Dijkstra);
I Best case: π(v) = dist(v , t) for all v :

F `π(v , w) = 0 if on shortest s–t path, positive otherwise;
F search visits only the shortest path.

I Theorem [GH05]: tighter lower bounds → fewer vertices scanned.

Could use Euclidean-based lower bounds, for example.
I we will see better methods shortly.



A∗ Search: Bidirectional Version
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Bidirectional A∗ search needs two potential functions:
I forward: pf (v) estimates dist(v , t);
I reverse: pr (v) estimates dist(s, v).

Problem: different forward and reverse costs!
I `pf

(v ,w) = `(v ,w)− pf (v) + pf (w) (arc scanned from v);
I `pr (v ,w) = `(v ,w)− pr (w) + pr (v) (arc scanned from w);
I We need `pf

(v ,w) = `pr (v ,w):
F must have pf (w) + pr (w) = pf (v) + pr (v) = constant;
F functions are consistent.

Solution: use average potential function [IHI+94] instead:

I πf (v) = pf (v)−pr (v)
2

I πr (v) = pr (v)−pf (v)
2 = −πf (v).

I Now πr (u) + πf (u) = 0 for every u.



A∗ Search: The ALT Algorithm
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Two-phase algorithm.

Preprocessing:
1 pick a few (e.g., 16) vertices as landmarks;
2 compute distances between landmarks and all vertices;
3 store these distances.

Query: A∗ search with landmarks using triangle inequality.

A∗ + Landmarks + Triangle inequality: ALT [GH05, GW05]



ALT Queries
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Use triangle inequality for lower bounds:
I dist(v ,w) ≥ dist(A,w)− dist(A, v)
I dist(v ,w) ≥ dist(v ,A)− dist(w ,A)
I dist(v ,w) ≥ max{dist(A,w)− dist(A, v), dist(v ,A)− dist(w ,A)}.

More than one landmark: pick best (maximum) over all.
I more landmarks ⇒ better bounds, more memory

A good landmark appears “before” v or “after” w .



Northwestern USA
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ALT: 16 landmarks, 4 (yellow) used for this search.



ALT: An Example
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ALT:



ALT: Selecting Landmarks
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A good landmark for an s–t query appears “before” s or “after” t.

We must pick landmarks that are OK for all queries.

Picking landmarks around the border seems reasonable.

Several techniques have been tested:
I random;
I planar;
I avoid;
I maxcover.



ALT: Planar Landmarks
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The planar algorithm:

1 divide map into k equal-sized slices;
2 pick farthest vertex in each slice as a landmark

Works well only if map is well-shaped:
I not very good in practice.
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2 pick farthest vertex in each slice as a landmark

Works well only if map is well-shaped:
I not very good in practice.
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I not very good in practice.
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The avoid selection method (informally):
I adds one landmark at a time;
I prefers regions badly covered by previous landmarks.

To pick a new landmark (less informally):
1 pick a root r at random;
2 build the shortest path tree Tr from r ;
3 pick a subtree Tw of Tr such that:

F Tw does not contain a landmark;
F Tw has many vertices;
F for v ∈ Tw , existing landmarks give bad bounds on dist(r , v);

4 pick a leaf of Tw as the new landmark.
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The avoid selection method (informally):
I adds one landmark at a time;
I prefers regions badly covered by previous landmarks.

To pick a new landmark (almost formally):
1 pick a root r at random;
2 build the shortest path tree Tr from r ;
3 define for each node v :

F LB(v): lower bound on dist(r , v) using landmarks already picked;
F weight(v): dist(r , v)− LB(v);
F size(v): sum of the weights of v ’s descendants in Tr

(or zero if there’s a landmark among the descendants).

4 let w be the vertex maximizing size(w);
5 starting at w , go down Tr following the maximum-sized child;
6 pick the leaf at the end of this path as the new landmark.



ALT: Landmark Generation

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 33 / 123

ALT algorithm on Europe with travel times, 16 landmarks:

METHOD PREP. SCANS

random 6 343440
avoid 12 84740

PREP.: preprocessing time in minutes.

SCANS: average number of scans for random queries.
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To pick 16 landmarks, generate 64 and pick the “best” 16:
I look for subset minimizing query times.

Measure quality of subset S based on individual arcs.
I Landmark L covers arc (v ,w) if v is on shortest path from L to w :

F Formally: `(v , w) = dist(L, w)− dist(L, v).
F Intuition: L gives lower bounds on paths containing (v , w).

I If one landmark in S covers (v ,w), then S covers (v ,w).

The maxcover landmark selection algorithm:
I Pick the subset that covers the most arcs.
I NP-hard, but local search works well.
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ALT algorithm on Europe with travel times, 16 landmarks:

METHOD PREP. SCANS

random 6 343440
avoid 12 84740
maxcover 79 71508



Results
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USA, travel times, random pairs [GKW09]:

PREPROCESSING QUERY

METHOD minutes MB scans ms
Dijkstra — 536 11 808 864 5440.49
ALT(16) 18 2563 187 968 295.44

1% of nodes visited on average, 10% in bad cases.

Can we do better?
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Reach



Treasure Island

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 38 / 123

Intuition: don’t visit “local” roads when far from both s and t.
I Search from San Francisco to Oakland should not visit Treasure Island.
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Let v be a vertex on the shortest path P between s and t:

v ts

Reach of v with respect to P:

r(v ,P) = min{dist(s, v), dist(v , t)}

Reach of v with respect to the whole graph:

r(v) = max
P

r(v ,P),

over all shortest paths P that contain v [Gut04].

Intuition:
I a high-reach vertex is close to the middle of some long shortest path;
I vertices on highways have high reach;
I local intersections have low reach.
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Reaches can prune the search during an s-t query.
I Intuition: don’t visit small-reach vertices when far from s and t.

When processing edge (v ,w):
I prune w if r(w) < min{d(s, v) + `(v ,w), LB(w , t)}:

LB(w,t)
d(s,v) wv

ts

I If P = (s, . . . , v ,w , . . . t) were a shortest path, r(w) would be higher.

How can we find the lower bound LB(w , t)?
I Explicitly: Euclidean distances [Gut04], landmarks.
I Implicitly: make the search bidirectional.



Reach Queries
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Radius Rt of the opposite search is lower bound:
I if w not visited by reverse direction, d(w , t) ≥ Rt .

When processing edge (v ,w):
I prune w if r(w) < min{d(s, v) + `(v ,w),Rt}:

Rt

LB(w,t)
d(s,v) wv

ts

For best results, balance forward and reverse searches.



Northwestern USA

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 42 / 123

Reach:



Preprocessing: Computing Reaches
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s

1 Initialization: set r(v)← 0, for all v ;
2 For every vertex s ∈ V :

I for each vertex v in shortest path tree Ts :
F take longest shortest path Pst containing v .
F ds(v) (depth): distance from s;
F hs(v) (height): distance to farthest descendant;
F rs(v) (reach within Ts) = min{ds(v), hs(v)}.
F set r(v)← max{r(v), rs(v)}.

Running time = n × Dijkstra
I Too slow: 12 hours on Bay Area (n = 330K ), years on USA.

We need something faster!
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1 Initialization: set r(v)← 0, for all v ;
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We need something faster!



Preprocessing: Computing Small Reaches

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 44 / 123

Suppose we only need to find vertices with small reach (< ε).

Fact: r(v) ≥ ε ⇒ there is a path P 3 v with r(v ,P) ≥ ε.

A shortest path Pst = (s, s ′, . . . , v , . . . , t ′, t) is ε-minimal w.r.t. v if
I dist(s, v) ≥ ε and dist(s ′, v) < ε;
I dist(v , t) ≥ ε and dist(v , t ′) < ε.

εε

tt’vs’s



Preprocessing: Computing Small Reaches
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Fact: r(v) ≥ ε⇒ there is an ε-minimal path P 3 v with r(v ,P) ≥ ε.

Algorithm:
I compute reach bounds r ′(·) using only (all) ε-minimal paths;
I if r ′(v) < ε, the bound is correct (r(v) = r ′(v));
I if r ′(v) ≥ ε, we can say nothing (r(v) ≥ r ′(v)).

It suffices to consider partial trees:
I shortest path trees grown to depth about 2ε.



Preprocessing: Bounding Reaches
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Algorithm:
1 Set G ′ ← G and ε← ε0 (some small value).
2 while G ′ is not empty:

F use partial trees to find vertices with reach ≥ ε;
F remove from G ′ the remaining vertices (their reach is < ε);
F set ε← 3ε.



Penalties
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19

13

15

[80]

Problem: must consider shortest paths starting at discarded vertices.

Solution is to add penalties:
I upper bound on the length of longest path into “discarded” area.

When growing partial trees:
I “extend” all paths s–t using penalties at s and t.

Reaches are no longer exact!
I valid upper bounds r̄(·);
I query algorithm still correct;
I query performance slightly worse.
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Problem: must consider shortest paths starting at discarded vertices.

Solution is to add penalties:
I upper bound on the length of longest path into “discarded” area.

When growing partial trees:
I “extend” all paths s–t using penalties at s and t.

Reaches are no longer exact!
I valid upper bounds r̄(·);
I query algorithm still correct;
I query performance slightly worse.
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Algorithm:
1 Set G ′ ← G and ε← ε0 (some small value).
2 while G ′ is not empty:

F use partial trees to find vertices with reach ≥ ε;
F remove from G ′ the remaining vertices (their reach is < ε);
F set ε← 3ε.

Preprocessing time:
I trees get deeper as ε increases;
I G ′ gets smaller: fewer trees than G , each with fewer vertices.

This helps somewhat, but not much:
I Small graph (n = 330K ): 12h exact, 1h approximate.
I Still too slow for large graphs (weeks).



Reach with Shortcuts
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Consider a sequence of vertices of degree two on the path below:

I they all have high reach.

Add a shortcut [SS05, SS06]:

I single edge bypassing a path (with same length).

Assume ties are broken by taking path with fewer nodes:

I some reaches are reduced!

More shortcuts can be added recursively.

10001000

1010101010101010
ts
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Consider a sequence of vertices of degree two on the path below:
I they all have high reach.

Add a shortcut [SS05, SS06]:

I single edge bypassing a path (with same length).

Assume ties are broken by taking path with fewer nodes:

I some reaches are reduced!

More shortcuts can be added recursively.

10001000

1010101010101010
100010101020103010401030102010101000 ts
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Consider a sequence of vertices of degree two on the path below:
I they all have high reach.

Add a shortcut [SS05, SS06]:
I single edge bypassing a path (with same length).

Assume ties are broken by taking path with fewer nodes:

I some reaches are reduced!

More shortcuts can be added recursively.

10001000

1010101010101010

80
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Consider a sequence of vertices of degree two on the path below:
I they all have high reach.

Add a shortcut [SS05, SS06]:
I single edge bypassing a path (with same length).

Assume ties are broken by taking path with fewer nodes:
I some reaches are reduced!

More shortcuts can be added recursively.

1000605040304050601000 ts
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Consider a sequence of vertices of degree two on the path below:
I they all have high reach.

Add a shortcut [SS05, SS06]:
I single edge bypassing a path (with same length).

Assume ties are broken by taking path with fewer nodes:
I some reaches are reduced!

More shortcuts can be added recursively.

1000201020302010201000 ts
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Consider a sequence of vertices of degree two on the path below:
I they all have high reach.

Add a shortcut [SS05, SS06]:
I single edge bypassing a path (with same length).

Assume ties are broken by taking path with fewer nodes:
I some reaches are reduced!

More shortcuts can be added recursively.
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Shorcuts are actually added heuristically during preprocessing:
I in each iteration, bypass some low-degree (≤ 4) vertices:

F neighbors connected directly by shortcuts;
F penalties added to the neighbors;
F bound the reach of eliminated vertex (below: r̄(v) = 7);
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Benefits of shortcuts:
I speeds up preprocessing (graph G ′ shrinks faster);
I speeds up queries (pruning more effective);
I requires slighly more space (graph has ∼ 50% more arcs).
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Revised algorithm:
1 Set G ′ ← G and ε← ε0 (some small value).
2 while G ′ is not empty:

F add shortcuts;
F use partial trees to find vertices with reach ≥ ε;
F remove from G ′ the remaining vertices (their reach is < ε);
F set ε← 3ε.
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Reach with shortcuts (RE):
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Reach with shortcuts (RE):
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Preprocessing:
I keep in-penalties and out-penalties;
I compute arc reaches instead of vertex reaches;
I recompute the top reaches explicitly;
I careful stopping criterion when growing partial trees.
I relax criteria for shortcutting in later rounds.

Queries:
I rearrange vertices to improve locality;
I high-reach vertices together in memory;
I implicitly skip low-reach arcs out of each vertex.
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USA, travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes MB scans ms
Dijkstra — 536 11 808 864 5440.49
ALT(16) 18 2563 187 968 295.44
RE 28 893 2 405 1.77
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Reach for A∗
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A∗ search with landmarks can use reaches:
I A∗ gives direction to the search;
I reaches make the search space sparser.

Landmarks have dual purpose:
I guide the search;
I provide lower bound for reach pruning.
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Reach + ALT (REAL):
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REAL: Reach + ALT.
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USA, travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes MB scans ms
Dijkstra — 536 11 808 864 5440.49
ALT(16) 18 2563 187 968 295.44
RE 28 893 2 405 1.77
REAL(16) 45 3032 592 0.80
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Fact: search visits low-reach vertices only in the beginning.

Can lower memory usage as follows:
I store landmark distances only for vertices with reach ≥ R.
I start search without A∗ (only reaches);
I use A∗ (with reaches) when radii are greater than R.

Example: 64 landmarks, with distances to only n/16 top vertices:
I same memory as four “full” landmarks.
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USA, travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes MB scans ms
Dijkstra — 536 11 808 864 5440.49
ALT(16) 18 2563 187 968 295.44
RE 28 893 2 405 1.77
REAL(16) 45 3032 592 0.80
REAL(64,16) 114 1579 538 0.86
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Partial A∗ (REAL(64,16)), 1000 random pairs:

PREPROCESS QUERY

METHOD minutes MB avgscan ms
USA (times) 113 1579 538 0.86

USA (distances) 120 1575 670 1.22
Europe (times) 102 1037 610 0.91

Europe (distances) 76 1084 562 0.91

(Europe has 18.0 M vertices and 42.6 M arcs.)

Grids: A∗ is just as good, reaches not so much (no hierarchy).

Random graphs: both methods are useless.
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Europe (18M vertices), travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes B/node scans ms
Dijkstra — — 8 984 289 4365
ALT(16) 13 93 82 348 120.1
RE 45 38 4 371 3.06
REAL(16) 58 109 714 0.89
REAL(64,16) 75 60 610 0.91
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Contraction Hierarchies

(CH)
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2 3 2 1 2
2 6 1 3 54

CH Preprocessing [GSSD08]:
1 eliminate vertices one by one, in some order;

2 add shortcuts to preserve distances.

Invariant: distances between remaining vertices are preserved;
I last k vertices induce an overlay graph, for every k.

Output: augmented graph + node order.
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Bidirectional search following only upward arcs.

In general, several nodes will be visited by both searches:

I Shortest path uses the node minimizing the sum of its distance labels.
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In general, several nodes will be visited by both searches:
I Shortest path uses the node minimizing the sum of its distance labels.
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Distances are preserved by the augmented graph G+ = (V ,E+).

Claim: for every {s, t}, G+ has a shortest path Pst 3 v such that:
I the subpath Psv is increasing;
I the subpath Pvt is decreasing.

In other words, Pst has no interior local minima.

Forward search will find Psv , backward search will find Pvt .
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When bypassing v , for every two neighbors u and w :
I Add edge (u,w) with `(u,w) = `(u, v) + `(v ,w)...

I ...but only if there is no witness path Puw :
F length at most `(u, v) + `(v , w);
F does not contain v .

Must perform witness searches to find such paths:

I Dijkstra between neighbors;
I essential for good query performance;
I avoids explosion in the size of the graph;
I somewhat expensive:

F run when shortcutting;
F run when computing priorities.
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Theorem

The augmented graph has a shortest s–t path with no interior local minima.

Take a SP P with local minima MP = {ui : ui−1 > ui < ui+1}; let uk = minMP ;

when uk was contracted, (uk−1, uk) and (uk , uk+1) were in the overlay graph;

either the edge e = (uk−1, uk+1) was added, or there was a witness path;

the subpath (uk−1, uk , uk+1) can be replaced:

I either MP becomes empty or minMP increases.

minMP can increase at most n times ⇒ MP is eventually empty.
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Each arc (a, b) stored only at min{a, b}:
I used by forward search (from a) if a < b;
I used by backward search (from b) if b < a.

Can save memory, particularly on undirected edges.
I stored twice for Dijkstra, once for CH.
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Elimination order actually determined online.
I each candidate vertex has a priority;
I keep all vertices in a heap;
I neighbors updated after contraction.

Priority may depend on several terms:
I edge difference (removed − inserted).
I uniformity (nodes should be spread around the graph);
I cost of contraction (search spaces during witness search);
I · · ·

Any order is correct, but performance varies:
I space (number of shortcuts);
I preprocessing time;
I query times.
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Europe (18M vertices), travel times, random pairs [GSSD08]:

PREPROCESSING QUERY

METHOD minutes B/node scans ms

CH(E) 245 −1.6 1791 0.67
CH(ES) 91 –3.5 614 0.24
CH(EDS1235) 10 0.6 459 0.22
CH(EVSQWL) 32 −3.0 359 0.15

Key:
I E: edge difference
I S: size of search space (cost of contraction)
I D: deleted neighbors (uniformity)
I 1235: hop limits on witness search
I EVSQWL: six different heuristic measures (see [GSSD08]).



Results

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 75 / 123

Europe (18M vertices), travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes B/node scans ms
Dijkstra — — 8984 289 4365
ALT(16) 13 93 82 348 120.1
RE 45 38 4 371 3.06
REAL(16) 58 109 714 0.89
REAL(64,16) 75 60 610 0.91
Contraction Hierarchies 25 −3 355 0.18
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Arc Flags
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Originally Lauther [Lau04], later improved [MSS+06, HKMS09].

Preprocessing:
I partition graph into k regions;
I store a k-bit flag with each arc (v ,w):

F bit i indicates if there is a shortest path from v to region i using (v , w).

Query from s to t:
I set R ← region(t);
I run modified Dijkstra’s algorithm from s:

F when scanning v , skip arc (v , w) if ths R-th bit of its flag is 0
(arc (v , w) is not on any shortest path to region r).

1 1 1

1 1 1 1 1 1

1 1 11 0 0

100

1 101 1 0
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Basic preprocessing algorithm:
1 Initialize all flags to 0.
2 Set self-region flags to 1.

3 For each node v :

1 let R ← region(v).
2 grow an incoming shortest path tree;
3 for each tree arc, set R-th bit to 1.

Cost: n × Dijkstra.
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Faster preprocessing algorithm:
1 Initialize all flags to 0.
2 Set self-region flags to 1.
3 For each node v with an incoming boundary arc:

1 let R ← region(v).
2 grow an incoming shortest path tree;
3 for each tree arc, set R-th bit to 1.

Cost: (number of boundary nodes)×Dijkstra.
I can be accelerated in practice.
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Must partition the graph into regions.

Original suggestion [Lau04]: simple grid.

Better performance if regions:

I are roughly balanced in size;
I are connected;
I have few boundary arcs.

Several methods tried [MSS+06]:

I quad-trees;
I kd-trees;
I multiway cut.



Arc Flags: Partitioning

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 80 / 123

Must partition the graph into regions.

Original suggestion [Lau04]: simple grid.

Better performance if regions:
I are roughly balanced in size;
I are connected;
I have few boundary arcs.

Several methods tried [MSS+06]:

I quad-trees;
I kd-trees;
I multiway cut.



Arc Flags: Partitioning

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 80 / 123

Must partition the graph into regions.

Original suggestion [Lau04]: simple grid.

Better performance if regions:
I are roughly balanced in size;
I are connected;
I have few boundary arcs.

Several methods tried [MSS+06]:
I quad-trees;

I kd-trees;
I multiway cut.



Arc Flags: Partitioning

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 80 / 123

Must partition the graph into regions.

Original suggestion [Lau04]: simple grid.

Better performance if regions:
I are roughly balanced in size;
I are connected;
I have few boundary arcs.

Several methods tried [MSS+06]:
I quad-trees;
I kd-trees;

I multiway cut.



Arc Flags: Partitioning

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 80 / 123

Must partition the graph into regions.

Original suggestion [Lau04]: simple grid.

Better performance if regions:
I are roughly balanced in size;
I are connected;
I have few boundary arcs.

Several methods tried [MSS+06]:
I quad-trees;
I kd-trees;
I multiway cut.



Arc Flags: Compression

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 81 / 123

1 1 1

1 1 1 1 1 1

1 1 11 0 0

100

1 101 1 0

Fact: several arcs have the exact same k-bit flags.

Trick: keep a table with all different flags seen:

I each arc keeps index of a table entry;
I typical savings: 80%.

Can even merge some flags to save more space:

I still correct if some 0s become 1s.
I performance may suffer.
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The “problem of cones”:
I flags fail close to the destination;
I no pruning within target region.

Bidirectional arc flags are better:
I keep forward and reverse flags;
I double space and preprocessing time;
I searches meet far from source and destination!
I Europe, 128 regions [Del10]:

F unidirectional: 92 545 scans;
F bidirectional: 2 764 scans.

Also: use more regions.
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I Europe, 128 regions [Del10]:

F unidirectional: 92 545 scans;
F bidirectional: 2 764 scans.

Also: use more regions.
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Europe (18M vertices), travel times, random pairs [Hil07]:

PREPROCESSING QUERY

REGIONS minutes B/node scans ms
0 0 0 9 114 385 5591.6
200 1028 19 2369 1.6
600 1723 21 1700 1.1
1000 2156 25 1593 1.1

More regions:
I fewer vertices scanned, but...
I ...more space required.
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Europe (18M vertices), travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes B/node scans ms
Dijkstra — — 8984 289 4365
ALT(16) 13 93 82 348 120.1
RE 45 38 4 371 3.06
REAL(16) 58 109 714 0.89
REAL(64,16) 75 60 610 0.91
Contraction Hierarchies 25 −3 355 0.18
Arc Flags 2156 25 1 593 1.10
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SHARC
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Issues with arc flags:
I very expensive preprocessing;
I (unidirectional) queries could be faster.

Possible improvements [BD09]:
I contraction (shortcuts);
I multilevel flags.
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1 Before partition, remove attached trees:
I repeatedly remove vertices of degree 1 (about 1/3 of Europe);
I the remaining 2/3 are the core.

2 Compute partition and arc flags of the core.
3 Set flags on attached trees:

I arcs towards the core: all flags set to 1;
I arcs away from the core: only R-th bit set to 1.

F R: region containing the root of the attached tree.
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Idea can be generalized for arbitrary contractions:
1 add shortcuts to bypass a contracted component;

F arcs entering the component have only own-region bit set;
F all other arcs are set to 1.

2 compute arc flags of the core.
3 further refinement of component flags is possible.
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Compute multilevel partition:

I cells (region) at level i subdivide cells at i + 1.

When query looks at (v ,w):
I use flags for highest level i with celli (v) 6= celli (t);

Advantages:
I performance: bottom-level cells are tiny.
I saves space: level-i flags defined only for cells with same parent.
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SHARC [BD09]: SHortcuts + ARC flags.

Preprocessing:
1 Build multilevel partition.
2 For each level 0 . . . L:

F perform contractions within each cell;
F compute appropriate arc flags.

Query: similar to arc flags, on graph with shortcuts.

Unidirectional!
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Unidirectional SHARC queries:

partition Prepro Query
time space #settled time

#cells per level #total cells [h:m] [B/n] nodes [µs]
- - - - - - - 128 128 1:52 6.0 78 429 23 306
- - - - - - 8 120 960 1:14 9.8 11 362 3 049
- - - - - 4 8 116 3 712 1:25 10.8 3 459 983
- - - - 4 4 8 112 14 336 1:14 11.6 1 320 441
- - - 4 4 8 8 104 106 496 1:18 13.7 700 294
- - 4 4 4 4 8 104 212 992 1:21 14.5 654 290
- 4 4 4 4 8 8 96 1 572 864 1:46 19.3 637 294
4 4 4 4 4 4 8 96 3 145 728 1:56 20.0 627 293

Can be made bidirectional:
I best performace with two levels;
I double preprocessing time;
I queries about 5 times faster.
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Europe (18M vertices), travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes B/node scans ms
Dijkstra — — 8984 289 4365
ALT(16) 13 93 82 348 120.1
RE 45 38 4 371 3.06
REAL(16) 58 109 714 0.89
REAL(64,16) 75 60 610 0.91
Contraction Hierarchies 25 −3 355 0.18
Arc Flags 2156 25 1 593 1.10
SHARC (uni) 81 15 654 0.29
SHARC (bi) 212 21 125 0.065
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CHASE
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CHASE [BDS+08, BDS+10]: Contraction Hierarchies + Arc Flags.

Preprocessing:
1 Run CH preprocessing to create G ′.
2 Partition G ′ into k regions.
3 Compute arc flags for all arcs in G ′.

Query is bidirectional Dijkstra, double-pruned:
I CH: only follow arcs going “up” in the hierarchy;
I Arc flags: only follow arcs on a shortest path to the target region.

Practical improvement:
I compute flags only for arcs between the top 5% vertices;
I much faster preprocessing, query times barely affected.
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Europe (18M vertices), travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes B/node scans ms
Dijkstra — — 8984 289 4365
ALT(16) 13 93 82 348 120.1
RE 45 38 4 371 3.06
REAL(16) 58 109 714 0.89
REAL(64,16) 75 60 610 0.91
Contraction Hierarchies 25 −3 355 0.18
Arc Flags 2156 25 1 593 1.10
SHARC (uni) 81 15 654 0.29
SHARC (bi) 212 21 125 0.065
CHASE 99 12 45 0.017
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Transit-Node Routing

(TNR)
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Intuition: when driving “far away” from a small region (on a shortest
path), you must pass through one of very few access roads.
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[BFM+07]

USA has small (∼ 10 000) set T of transit nodes s.t. [BFM+07]:
I the shortest path between any two “far away” nodes passes through T :

F path has at least one node (vertex) from T ;

I there are very few ways of driving “far away” from any vertex s:
F v is an access node for s if it’s the first node in T on a long shortest

path from s;
F on average, any vertex s has about 10 access nodes.
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s t

distances between access node

access node

transit nodes

Preprocessing:
I find set of transit nodes T ⊂ V ;
I store full |T | × |T | distance table;

I for every node v , store distances v to
−→
A (v) and from

←−
A (t):

F forward and backward access nodes.

Query from s to t:

I if s and t are “sufficiently far,” do |
−→
A (s)| × |

←−
A (t)| table lookups;

F dist(s, t) = min{dist(s, u)+ dist(u, v)+ dist(v , t) : u ∈
−→
A (s), v ∈

←−
A (t)}

I otherwise, use another algorithm (e.g., CH).



Transit Nodes: Grid Implementation

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 100 / 123

[BFM+07]

Use a k × k grid to partition the graph.

Define two squares centered at each cell C :
I inner (5× 5) and outer (9× 9).

Access nodes for C : vertices in B5 on shortest paths from B1 to B9.
I Bi : boundary vertex of i × i square centered at C .
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[BFM+07]

Query algorithm:
I If s and t are > 4 cells apart, do table lookups.
I Otherwise, do simplified reach-pruned Dijkstra.
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USA graph [BFM+07]:

grid global prep. time
size |T | |A(v)| queries (minutes)

64× 64 2 042 11.4 91.7% 498
128× 128 7 426 11.4 97.4% 525
256× 256 24 899 10.6 99.2% 638
512× 512 89 382 9.7 99.8% 859

1024× 1024 351 484 9.1 99.9% 964

Tuned algorithm:
I Two levels (top with 128× 128, bottom with 256× 256).

F bottom (hash) table only stores distances not covered by top table.

I with some compression techniques, needs 21 bytes/node.
I queries: 12 µs global (99%), 5112 µs local (1%).
I average: 63µs
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[BFM+07]

1 Perform hierarchy-based preprocessing (e.g., CH).
2 Pick ∼10 000 most important nodes as transit nodes;

I compute distance table for them.

3 Store with each vertex v ∈ V :
I
−→
A (v) and

←−
A (v) (forward and reverse access nodes):

F run CH searches from v to find them;

I radius(v): (Euclidean) distance to farthest access node.
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Query from s to t: check locality first.

Let geo(s, t) = Euclidean distance between s and t.

I radius(s) + radius(t) ≤ geo(s, t): run CH query.
I radius(s) + radius(t) > geo(s, t): do table lookups.

Engineering: use three levels for best peformance.
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Query from s to t: check locality first.

Let geo(s, t) = Euclidean distance between s and t.
I radius(s) + radius(t) ≤ geo(s, t): run CH query.
I radius(s) + radius(t) > geo(s, t): do table lookups.

Engineering: use three levels for best peformance.
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Europe (18M vertices), travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes B/node scans ms
Dijkstra — — 8984 289 4365
ALT(16) 13 93 82 348 120.1
RE 45 38 4 371 3.06
REAL(16) 58 109 714 0.89
REAL(64,16) 75 60 610 0.91
Contraction Hierarchies 25 −3 355 0.18
Arc Flags 2156 25 1 593 1.10
SHARC (uni) 81 15 654 0.29
SHARC (bi) 212 21 125 0.065
CHASE 99 12 45 0.017
Transit Node Routing 112 204 — 0.003
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TNR considers
−→
A (s)×

←−
A (t) table entries:

I no directionality!

TNR+AF [BDS+08, BDS+10]:
I Perform TNR preprocessing, find transit nodes T .
I Partition overlay graph GT = (T ,ET ) into k regions.

I Compute k-bit flags on the arcs (s, u), for all s ∈ V and u ∈
−→
A (s).

F R-th bit is 1 if there is a shortest path from s to R through u;
F same for reverse direction.

Query only looks at relevant entries.

Lookups on Europe: 40.9→ 3.1.
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Europe (18M vertices), travel times, random pairs [BDS+10]:

PREPROCESSING QUERY

METHOD minutes B/node scans ms
Dijkstra — — 8984 289 4365
ALT(16) 13 93 82 348 120.1
RE 45 38 4 371 3.06
REAL(16) 58 109 714 0.89
REAL(64,16) 75 60 610 0.91
Contraction Hierarchies 25 −3 355 0.18
Arc Flags 2156 25 1 593 1.10
SHARC (uni) 81 15 654 0.29
SHARC (bi) 212 21 125 0.065
CHASE 99 12 45 0.017
Transit Node Routing 112 204 — 0.003
TNR + Arc Flags 229 321 — 0.002
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Highway Dimension
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All these algorithms work well on road networks. Why?

Intuitively, road networks have nice properties:
I natural hierarchy (few verticess/arcs are really important);
I small number of access nodes.

We can try to formalize this.

Assumptions [AFGW10]:
I undirected graph G = (V ,E ) with |V | = n and |E | = m;
I positive, integer arc lengths;
I diameter D;
I constant maximum degree.
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Bu,d : ball of radius d around u (i.e., all v with dist(u, v) ≤ d).

P(v ,w): shortest path between v and w .

Definition

The highway dimension of G = (V ,E ) is the smallest h such that:

for every distance r > 0 and vertex u ∈ V , there exists a set S s.t.:
I |S | ≤ h (S is small); and
I S ⊆ Bu,4r (S is a subset of a ball); and
I S hits every shortest path P(v ,w) ⊆ Bu,4r with |P(v ,w)| > r .

In English

For any vertex u and any distance r , there are h vertices that “hit” every
long (> r) shortest path belonging to the ball of radius 4r around u.
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Shortest Path Cover (SPC)

A set of vertices C is an (r , k)-SPC of G = (V ,E ) iff:

C hits every shortest path P with r < |P| ≤ 2r in G ; and

|C ∩ Bu,2r | ≤ k for every u ∈ V .

Theorem

If G has highway dimension h, there exists an (r , h)-SPC for any r .

Can find (r ,O(h log n))-SPC in polynomial time.

Will assume we can find (r , h)-SPCs for simplicity.
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1 Pick a series of log D SPCs:
I S0 = V ;
I Si is an (2i , h)-SPC, for i > 0.

2 Define level(v) = i iff v ∈ Si but not higher.
I “important” nodes have higher levels;
I at most log D levels.

3 Perform CH-like preprocessing:
I contract level 0, then level 1, ..., then level log D.
I arbitrary order within each level.

Theorem

This algorithm produces a graph G+ = (V ,E ∪ E+) with maximum degree
O(h log D).
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Lemma

If v has level i , then reach(v) ≤ 2i+1 in G+.

If reach(v) > 2i+1, there would be a shortest path Psvt s.t.:
I `(Psv ) ≥ 2i+1

I `(Pvt) ≥ 2i+1

Both subpaths have nodes at level i + 1; call them u and w .

During preprocessing, v was eliminated before u and w .

There would be a shortcut (u,w) bypassing v .
I shortest s–t path would use it.
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Theorem

A reach-pruned query on G+ takes O((h log D)2) time.

A vertex v of reach 2i+1 is only scanned if v ∈ Bs,2·2i .

Si is a (2i , h)-SPC: there are at most O(h) such vertices.

O(h log D) total scans, each with O(h log D) degree.

The same bound holds for CH.

Can prove a bound of O(h log D) for a variant of TNR.
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Extensions
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Many-to-many shortest path problem:
I Input: Weighted graph G = (V ,A), two sets S ⊆ V and T ⊆ V .
I Output: |S | × |T | distance table (from each s ∈ S to each t ∈ T ).

Possible solutions:
I run Dijkstra’s algorithm |S | times;
I run |S | · |T | point-to-point queries.
I can one do better?
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1 Run CH (or similar) preprocessing [KSS+07].

2 Set D[s, t]←∞ for all (s, t) ∈ S × T
3 Compute backward CH searches for each target t ∈ T :

I a few hundred nodes visited for each t;
I store search spaces as triples (v , t, dist(v , t));

4 Partition triples into buckets:
I bucket B(v) has all triples of the form (v , ·, ·).

5 Compute forward CH searches from each source s ∈ S :
I When scanning v , check all triples (v , t, dist(v , t)) in B(v):

F set D[s, t]← min{dist(s, t), dist(s, v) + dist(v , t)}.



Many-to-Many Computation: Results
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Random 104 × 104 table [GSSD08].
I Dijkstra× 104 (full trees): ∼14 hours.
I CH× 108 (point-to-point): ∼5 hours.
I Many-to-many with CH: 10.2 seconds;

F plus preprocessing.
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Implementations on portable devices [GW05, SSV08].

Basic idea:
I keep immutable (preprocessed) data on flash/disk;

F bring relevant parts to RAM as needed;

I mutable data (distance labels, heaps, . . .) kept in RAM.

Must minimize data transfer:
I rearrange data;
I compress data;
I create well-defined blocks.

CH has good performance:
I Europe: 140 MB of flash, 69 ms query (330MHz ARM).
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Traffic: some edge weights increase temporarily.

Shortest paths change in arbitrary ways.

Solutions:
1 Rerun full preprocessing algorithm.
2 Rerun partial preprocessing algorithm:

F ALT: keep landmarks, recompute distances.
F CH: keep node ordering, recompute shortcuts.

3 Keep preprocessing, more effort at query time:
F ALT: lower bounds are still lower bounds (but worse).
F CH: allow “down” moves close to changed edges.



Time-Dependent Routing

Renato Werneck (MSR-SVC) Shortest Paths and Experiments MIDAS, August 2010 121 / 123

Lengths `(v ,w , τ) are functions of time:
I how long it takes to traverse the edge if arriving at time τ ;
I usually piecewise linear.

Dijkstra works if FIFO (non-overtaking) property holds:
I If B leaves after A, B cannot arrive before A.

Problem for acceleration techniques:
I Cannot do simple bidirectional search:

F unknown arrival time!
F there are workarounds.

I (Unidirectional) SHARC-based algorithm works
well [Del09].
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