Hash Tables: Hash Functions

Michael Levin

Higher School of Economics

Data Structures
 Data Structures and Algorithms

Outline

(1) Good Hash Functions

(2) Universal Family
(3) Hashing Integers
(4) Hashing Strings

Phone Book

Design a data structure to store your contacts: names of people along with their phone numbers. The data structure should be able to do the following quickly:

- Add and delete contacts,
- Lookup the phone number by name,
- Determine who is calling given their phone number.
- We need two Maps:
(phone number \rightarrow name) and (name \rightarrow phone number)
- We need two Maps:
(phone number \rightarrow name) and (name \rightarrow phone number)
■ Implement these Maps as hash tables
- We need two Maps:
(phone number \rightarrow name) and (name \rightarrow phone number)
- Implement these Maps as hash tables
- First, we will focus on the Map from phone numbers to names

Direct Addressing

- $\operatorname{int}(123-45-67)=1234567$

Direct Addressing

- int(123-45-67) $=1234567$
- Create array Name of size 10^{L} where L is the maximum allowed phone number length

Direct Addressing

- int(123-45-67) $=1234567$
- Create array Name of size 10^{L} where L is the maximum allowed phone number length
- Store the name corresponding to phone number P in Name[int (P)]

Direct Addressing

■ int(123-45-67) $=1234567$

- Create array Name of size 10^{L} where L is the maximum allowed phone number length
- Store the name corresponding to phone number P in Name[int (P)]
- If no contact with phone number P, Name[int $(P)]=\mathrm{N} / \mathrm{A}$

Direct Addressing

Direct Addressing

- Operations run in $O(1)$

Direct Addressing

- Operations run in $O(1)$
- Memory usage: $O\left(10^{L}\right)$, where L is the maximum length of a phone number

Direct Addressing

\square Operations run in $O(1)$

- Memory usage: $O\left(10^{L}\right)$, where L is the maximum length of a phone number
- Problematic with international numbers of length 12 and more: we will need 10^{12} bytes $=1 \mathrm{~TB}$ to store one person's phone book - this won't fit in anyone's phone!

Chaining

- Select hash function h with cardinality m

Chaining

- Select hash function h with cardinality m
- Create array Name of size m

Chaining

- Select hash function h with cardinality m
- Create array Name of size m

■ Store chains in each cell of the array Name

Chaining

- Select hash function h with cardinality m
- Create array Name of size m

■ Store chains in each cell of the array Name

- Chain Name[h(int(P))] contains the name for phone number P

Chaining

Parameters

- n phone numbers stored

Parameters

- n phone numbers stored
- m - cardinality of the hash function

Parameters

- n phone numbers stored
- m - cardinality of the hash function

■ c - length of the longest chain

Parameters

- n phone numbers stored
- m - cardinality of the hash function
- c - length of the longest chain
- $O(n+m)$ memory is used

Parameters

- n phone numbers stored
- m - cardinality of the hash function
- c - length of the longest chain
- $O(n+m)$ memory is used
- $\alpha=\frac{n}{m}$ is called load factor

Parameters

- n phone numbers stored
- m - cardinality of the hash function
- c - length of the longest chain
- $O(n+m)$ memory is used
- $\alpha=\frac{n}{m}$ is called load factor
- Operations run in time $O(c+1)$

Parameters

- n phone numbers stored
- m - cardinality of the hash function
- c - length of the longest chain
- $O(n+m)$ memory is used
- $\alpha=\frac{n}{m}$ is called load factor
- Operations run in time $O(c+1)$
- You want small m and c !

Good Example

Bad Example

First Digits

- For the map from phone numbers to names, select $m=1000$

First Digits

- For the map from phone numbers to names, select $m=1000$
- Hash function: take first three digits

First Digits

- For the map from phone numbers to names, select $m=1000$
- Hash function: take first three digits
- $h(800-123-45-67)=800$

First Digits

- For the map from phone numbers to names, select $m=1000$
- Hash function: take first three digits
- $h(800-123-45-67)=800$
- Problem: area code

First Digits

- For the map from phone numbers to names, select $m=1000$
- Hash function: take first three digits
- $h(800-123-45-67)=800$
- Problem: area code
- $h(425-234-55-67)=$
$h(425-123-45-67)=$ $h(425-223-23-23)=\cdots=425$
Last Digits

■ Select $m=1000$
Last Digits

- Select $m=1000$

■ Hash function: take last three digits
Last Digits

- Select $m=1000$
- Hash function: take last three digits
- $h(800-123-45-67)=567$
Last Digits

■ Select $m=1000$

- Hash function: take last three digits
- $h(800-123-45-67)=567$

■ Problem if many phone numbers end with three zeros

Random Value

- Select $m=1000$

Random Value

■ Select $m=1000$

- Hash function: random number between 0 and 999

Random Value

■ Select $m=1000$

- Hash function: random number between 0 and 999
- Uniform distribution of hash values

Random Value

■ Select $m=1000$

- Hash function: random number between 0 and 999
- Uniform distribution of hash values

■ Different value when hash function called again - we won't be able to find anything!

Random Value

■ Select $m=1000$

- Hash function: random number between 0 and 999
- Uniform distribution of hash values

■ Different value when hash function called again - we won't be able to find anything!
■ Hash function must be deterministic

Good Hash Functions

- Deterministic
- Fast to compute
- Distributes keys well into different cells

■ Few collisions

No Universal Hash Function

Lemma

If number of possible keys is $\operatorname{big}(|U| \gg m)$, for any hash function h there is a bad input resulting in many collisions.

Outline

(1) Good Hash Functions

(2) Universal Family
(3) Hashing Integers
(4) Hashing Strings

Idea

- Remember QuickSort?

Idea

■ Remember QuickSort?

- Choosing random pivot helped

Idea

- Remember QuickSort?
- Choosing random pivot helped

■ Use randomization!

Idea

■ Remember QuickSort?

- Choosing random pivot helped

■ Use randomization!

- Define a family (set) of hash functions

Idea

- Remember QuickSort?
- Choosing random pivot helped

■ Use randomization!

- Define a family (set) of hash functions
- Choose random function from the family

Universal Family

Definition

Let U be the universe - the set of all possible keys.

Universal Family

Definition

Let U be the universe - the set of all possible keys. A set of hash functions

$$
\mathcal{H}=\{h: U \rightarrow\{0,1,2, \ldots, m-1\}\}
$$

Universal Family

Definition

Let U be the universe - the set of all possible keys. A set of hash functions

$$
\mathcal{H}=\{h: U \rightarrow\{0,1,2, \ldots, m-1\}\}
$$

is called a universal family if

Universal Family

Definition

Let U be the universe - the set of all possible keys. A set of hash functions

$$
\mathcal{H}=\{h: U \rightarrow\{0,1,2, \ldots, m-1\}\}
$$

is called a universal family if for any two keys $x, y \in U, x \neq y$ the probability of collision

$$
\operatorname{Pr}[h(x)=h(y)] \leq \frac{1}{m}
$$

Universal Family

$$
\operatorname{Pr}[h(x)=h(y)] \leq \frac{1}{m}
$$

means that a collision $h(x)=h(y)$ on selected keys x and $y, x \neq y$ happens for no more than $\frac{1}{m}$ of all hash functions $h \in \mathcal{H}$.

How Randomization Works

■ $h(x)=\operatorname{random}(\{0,1,2, \ldots, m-1\})$ gives probability of collision exactly $\frac{1}{m}$.

How Randomization Works

■ $h(x)=\operatorname{random}(\{0,1,2, \ldots, m-1\})$ gives probability of collision exactly $\frac{1}{m}$.
■ It is not deterministic - can't use it.

How Randomization Works

- $h(x)=\operatorname{random}(\{0,1,2, \ldots, m-1\})$ gives probability of collision exactly $\frac{1}{m}$.
- It is not deterministic - can't use it.

■ All hash functions in \mathcal{H} are deterministic

How Randomization Works

- $h(x)=\operatorname{random}(\{0,1,2, \ldots, m-1\})$ gives probability of collision exactly $\frac{1}{m}$.
- It is not deterministic - can't use it.

■ All hash functions in \mathcal{H} are deterministic

- Select a random function h from \mathcal{H}

How Randomization Works

■ $h(x)=\operatorname{random}(\{0,1,2, \ldots, m-1\})$ gives probability of collision exactly $\frac{1}{m}$.

- It is not deterministic - can't use it.

■ All hash functions in \mathcal{H} are deterministic

- Select a random function h from \mathcal{H}
- Fixed h is used throughout the algorithm

Running Time

Lemma

If h is chosen randomly from a universal family, the average length of the longest chain c is $O(1+\alpha)$, where $\alpha=\frac{n}{m}$ is the load factor of the hash table.

Corollary

If h is from universal family, operations with hash table run on average in time $O(1+\alpha)$.

Choosing Hash Table Size

- Control amount of memory used with m

Choosing Hash Table Size

- Control amount of memory used with m

■ Ideally, load factor $0.5<\alpha<1$

Choosing Hash Table Size

- Control amount of memory used with m
- Ideally, load factor $0.5<\alpha<1$
- Use $O(m)=O\left(\frac{n}{\alpha}\right)=O(n)$ memory to store n keys

Choosing Hash Table Size

- Control amount of memory used with m
- Ideally, load factor $0.5<\alpha<1$
- Use $O(m)=O\left(\frac{n}{\alpha}\right)=O(n)$ memory to store n keys
- Operations run in time $O(1+\alpha)=O(1)$ on average

Dynamic Hash Tables

- What if number of keys n is unknown in advance?

Dynamic Hash Tables

- What if number of keys n is unknown in advance?
■ Start with very big hash table?

Dynamic Hash Tables

- What if number of keys n is unknown in advance?
- Start with very big hash table?
- You will waste a lot of memory

Dynamic Hash Tables

- What if number of keys n is unknown in advance?

■ Start with very big hash table?

- You will waste a lot of memory
- Copy the idea of dynamic arrays!

Dynamic Hash Tables

- What if number of keys n is unknown in advance?

■ Start with very big hash table?

- You will waste a lot of memory
- Copy the idea of dynamic arrays!
- Resize the hash table when α becomes too large

Dynamic Hash Tables

- What if number of keys n is unknown in advance?

■ Start with very big hash table?

- You will waste a lot of memory
- Copy the idea of dynamic arrays!
- Resize the hash table when α becomes too large
- Choose new hash function and rehash all the objects

Keep load factor below 0.9:

Rehash (T)

loadFactor $\leftarrow \frac{T \text {.number0fKeys }}{T . \text { size }}$
if loadFactor > 0.9:
Create $T_{\text {new }}$ of size $2 \times$ T.size
Choose $h_{\text {new }}$ with cardinality $T_{\text {new }}$.size For each object O in T :

Insert O in $T_{\text {new }}$ using $h_{\text {new }}$
$T \leftarrow T_{\text {new }}, h \leftarrow h_{\text {new }}$

Rehash Running Time

You should call Rehash after each operation with the hash table

Similarly to dynamic arrays, single rehashing takes $O(n)$ time, but amortized running time of each operation with hash table is still $O(1)$ on average, because rehashing will be rare

Outline

(1) Good Hash Functions

(2) Universal Family
(3) Hashing Integers
(4) Hashing Strings

Take phone numbers up to length 7, for example 148-25-67

- Take phone numbers up to length 7 , for example 148-25-67
- Convert phone numbers to integers from 0 to $10^{7}-1=9999$ 999:
148-25-67 $\rightarrow 1482567$
- Take phone numbers up to length 7 , for example 148-25-67
- Convert phone numbers to integers from 0 to $10^{7}-1=9999$ 999: 148-25-67 $\rightarrow 1482567$
- Choose prime number bigger than 10^{7}, e.g. $p=10000019$
- Take phone numbers up to length 7 , for example 148-25-67
- Convert phone numbers to integers from 0 to $10^{7}-1=9999$ 999: 148-25-67 $\rightarrow 1482567$
- Choose prime number bigger than 10^{7}, e.g. $p=10000019$

■ Choose hash table size, e.g. $m=1000$

Hashing Integers

Lemma

$\mathcal{H}_{p}=\left\{h_{p}^{a, b}(x)=((a x+b) \bmod p) \bmod m\right\}$ for all $a, b: 1 \leq a \leq p-1,0 \leq b \leq p-1$ is a universal family

Hashing Phone Numbers

Example

Select $a=34, b=2$, so $h=h_{p}^{34,2}$ and consider $x=1482567$ corresponding to phone number 148-25-67. $p=10000019$.

Hashing Phone Numbers

Example

Select $a=34, b=2$, so $h=h_{p}^{34,2}$ and consider $x=1482567$ corresponding to phone number 148-25-67. $p=10000019$.
$(34 \times 1482567+2) \bmod 10000019=407185$

Hashing Phone Numbers

Example

Select $a=34, b=2$, so $h=h_{p}^{34,2}$ and consider $x=1482567$ corresponding to phone number 148-25-67. $p=10000019$.
$(34 \times 1482567+2) \bmod 10000019=407185$
$407185 \bmod 1000=185$

Hashing Phone Numbers

Example

Select $a=34, b=2$, so $h=h_{p}^{34,2}$ and consider $x=1482567$ corresponding to phone number 148-25-67. $p=10000019$.
$(34 \times 1482567+2) \bmod 10000019=407185$
$407185 \bmod 1000=185$
$h(x)=185$

General Case

- Define maximum length L of a phone number

General Case

- Define maximum length L of a phone number
- Convert phone numbers to integers from 0 to $10^{L}-1$

General Case

- Define maximum length L of a phone number
- Convert phone numbers to integers from 0 to $10^{L}-1$
- Choose prime number $p>10^{L}$

General Case

- Define maximum length L of a phone number
- Convert phone numbers to integers from 0 to $10^{L}-1$
- Choose prime number $p>10^{L}$
- Choose hash table size m

General Case

- Define maximum length L of a phone number
- Convert phone numbers to integers from 0 to $10^{L}-1$
- Choose prime number $p>10^{L}$
- Choose hash table size m
- Choose random hash function from universal family \mathcal{H}_{p} (choose random $a \in[1, p-1]$ and $b \in[0, p-1])$

Outline

(1) Good Hash Functions

(2) Universal Family
(3) Hashing Integers
(4) Hashing Strings

Lookup Phone Numbers by Name

■ Now we need to implement the Map from names to phone numbers

Lookup Phone Numbers by Name

■ Now we need to implement the Map from names to phone numbers

- Can also use chaining

Lookup Phone Numbers by Name

■ Now we need to implement the Map from names to phone numbers

- Can also use chaining

■ Need a hash function defined on names

Lookup Phone Numbers by Name

■ Now we need to implement the Map from names to phone numbers

- Can also use chaining
- Need a hash function defined on names

■ Hash arbitrary strings of characters

Lookup Phone Numbers by Name

- Now we need to implement the Map from names to phone numbers
- Can also use chaining

■ Need a hash function defined on names

- Hash arbitrary strings of characters
- You will learn how string hashing is implemented in Java!

String Length Notation

Definition

Denote by $|S|$ the length of string S.
Examples
$\left|‘ a^{\prime} "\right|=1$
|‘'ab"' $=2$
|'‘abcde’"| = 5

Hashing Strings

■ Given a string S, compute its hash value

Hashing Strings

- Given a string S, compute its hash value

■ $S=S[0] S[1] \ldots S[|S|-1]$, where $S[i]$

- individual characters

Hashing Strings

- Given a string S, compute its hash value

■ $S=S[0] S[1] \ldots S[|S|-1]$, where $S[i]$

- individual characters
- We should use all the characters in the hash function

Hashing Strings

- Given a string S, compute its hash value

■ $S=S[0] S[1] \ldots S[|S|-1]$, where $S[i]$

- individual characters
- We should use all the characters in the hash function
- Otherwise there will be many collisions:

Hashing Strings

- Given a string S, compute its hash value

■ $S=S[0] S[1] \ldots S[|S|-1]$, where $S[i]$

- individual characters

■ We should use all the characters in the hash function

- Otherwise there will be many collisions:
- For example, if $S[0]$ is not used, $h\left(\right.$ '"aa'') $=h\left(\right.$ '" $\left.b a a^{\prime \prime}\right)=\cdots=h\left({ }^{\prime} z^{\prime}{ }^{\prime \prime}\right)$

Preparation

- Convert each character $S[i]$ to integer code

Preparation

- Convert each character $S[i]$ to integer code
- ASCII code, Unicode, etc.

Preparation

■ Convert each character $S[i]$ to integer code

- ASCII code, Unicode, etc.
- Choose big prime number p

Polynomial Hashing

Definition

Family of hash functions

$$
\mathcal{P}_{p}=\left\{h_{p}^{\times}(S)=\sum_{i=0}^{|S|-1} S[i] x^{i} \bmod p\right\}
$$

with a fixed prime p and all $1 \leq x \leq p-1$ is called polynomial.

PolyHash (S, p, x)

hash $\leftarrow 0$
for i from $|S|-1$ down to 0 : hash $\leftarrow($ hash $\times x+S[i]) \bmod p$
return hash
Example: $|S|=3$
1 hash $=0$
[hash $=S[2] \bmod p$
3 hash $=S[1]+S[2] x \bmod p$
4 hash $=S[0]+S[1] x+S[2] x^{2} \bmod p$

Java Implementation

The method hashCode of the built-in Java class String is very similar to our PolyHash, it just uses $x=31$ and for technical reasons avoids the $(\bmod p)$ operator.

Java Implementation

The method hashCode of the built-in Java class String is very similar to our PolyHash, it just uses $x=31$ and for technical reasons avoids the $(\bmod p)$ operator.

You now know how a function that is used trillions of times a day in many thousands of programs is implemented!

Lemma

For any two different strings s_{1} and s_{2} of length at most $L+1$, if you choose h from \mathcal{P}_{p} at random (by selecting a random $x \in[1, p-1])$, the probability of collision $\operatorname{Pr}\left[h\left(s_{1}\right)=h\left(s_{2}\right)\right]$ is at most $\frac{L}{p}$.

Proof idea

This follows from the fact that the equation $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{L} x^{L}=0(\bmod p)$ for prime p has at most L different solutions x.

Cardinality Fix

For use in a hash table of size m, we need a hash function of cardinality m.

First apply random h from \mathcal{P}_{p} and then hash the resulting value again using integer hashing. Denote the resulting function by h_{m}.

Lemma

For any two different strings s_{1} and s_{2} of length at most $L+1$ and cardinality m, the probability of collision $\operatorname{Pr}\left[h_{m}\left(s_{1}\right)=h_{m}\left(s_{2}\right)\right]$ is at most $\frac{1}{m}+\frac{L}{p}$.

Polynomial Hashing

Corollary

If $p>m L$, for any two different strings s_{1} and s_{2} of length at most $L+1$ the probability of collision $\operatorname{Pr}\left[h_{m}\left(s_{1}\right)=h_{m}\left(s_{2}\right)\right]$ is $O\left(\frac{1}{m}\right)$.

$$
\begin{align*}
& \text { Proof } \\
& \frac{1}{m}+\frac{L}{p}<\frac{1}{m}+\frac{L}{m L}=\frac{1}{m}+\frac{1}{m}=\frac{2}{m}=O\left(\frac{1}{m}\right)
\end{align*}
$$

Running Time

- For big enough p again have $c=O(1+\alpha)$

Running Time

- For big enough p again have $c=O(1+\alpha)$
■ Computing PolyHash(S) runs in time $O(|S|)$

Running Time

- For big enough p again have $c=O(1+\alpha)$
- Computing PolyHash(S) runs in time $O(|S|)$
- If lengths of the names in the phone book are bounded by constant L, computing $h(S)$ takes $O(L)=O(1)$ time

Conclusion

- You learned how to hash integers and strings
- Phone book can be implemented as two hash tables
- Mapping phone numbers to names and back
- Search and modification run on average in $O(1)$!

