
Hash Tables:

Hash Functions

Michael Levin

Higher School of Economics

Data Structures

Data Structures and Algorithms

https://goo.gl/ZVOAWt
https://goo.gl/KAfKJT

Outline

1 Good Hash Functions

2 Universal Family

3 Hashing Integers

4 Hashing Strings

Phone Book

Design a data structure to store your

contacts: names of people along with their

phone numbers. The data structure should

be able to do the following quickly:

Add and delete contacts,

Lookup the phone number by name,

Determine who is calling given their

phone number.

We need two Maps:

(phone number → name) and

(name → phone number)

Implement these Maps as hash tables

First, we will focus on the Map from

phone numbers to names

We need two Maps:

(phone number → name) and

(name → phone number)

Implement these Maps as hash tables

First, we will focus on the Map from

phone numbers to names

We need two Maps:

(phone number → name) and

(name → phone number)

Implement these Maps as hash tables

First, we will focus on the Map from

phone numbers to names

Direct Addressing

int(123-45-67) = 1234567

Create array Name of size 10L where L

is the maximum allowed phone number

length

Store the name corresponding to phone

number P in Name[int(P)]

If no contact with phone number P ,

Name[int(P)] = N/A

Direct Addressing

int(123-45-67) = 1234567

Create array Name of size 10L where L

is the maximum allowed phone number

length

Store the name corresponding to phone

number P in Name[int(P)]

If no contact with phone number P ,

Name[int(P)] = N/A

Direct Addressing

int(123-45-67) = 1234567

Create array Name of size 10L where L

is the maximum allowed phone number

length

Store the name corresponding to phone

number P in Name[int(P)]

If no contact with phone number P ,

Name[int(P)] = N/A

Direct Addressing

int(123-45-67) = 1234567

Create array Name of size 10L where L

is the maximum allowed phone number

length

Store the name corresponding to phone

number P in Name[int(P)]

If no contact with phone number P ,

Name[int(P)] = N/A

Direct Addressing

Natalie: 123-45-67 → 1234567

Steve: 223-23-23 → 2232323

Name

. . .

Natalie

N/A

N/A

. . .

Steve

N/A

. . .

Direct Addressing

Operations run in O(1)

Memory usage: O(10L), where L is the

maximum length of a phone number

Problematic with international numbers

of length 12 and more: we will need

1012 bytes = 1TB to store one person's

phone book � this won't �t in anyone's

phone!

Direct Addressing

Operations run in O(1)

Memory usage: O(10L), where L is the

maximum length of a phone number

Problematic with international numbers

of length 12 and more: we will need

1012 bytes = 1TB to store one person's

phone book � this won't �t in anyone's

phone!

Direct Addressing

Operations run in O(1)

Memory usage: O(10L), where L is the

maximum length of a phone number

Problematic with international numbers

of length 12 and more: we will need

1012 bytes = 1TB to store one person's

phone book � this won't �t in anyone's

phone!

Chaining

Select hash function h with cardinality m

Create array Name of size m

Store chains in each cell of the array

Name

Chain Name[h(int(P))] contains the

name for phone number P

Chaining

Select hash function h with cardinality m

Create array Name of size m

Store chains in each cell of the array

Name

Chain Name[h(int(P))] contains the

name for phone number P

Chaining

Select hash function h with cardinality m

Create array Name of size m

Store chains in each cell of the array

Name

Chain Name[h(int(P))] contains the

name for phone number P

Chaining

Select hash function h with cardinality m

Create array Name of size m

Store chains in each cell of the array

Name

Chain Name[h(int(P))] contains the

name for phone number P

Chaining

0

1

2

3

4

5

6

7

Steve: 223-23-23 Sasha: 239-17-17

Natalie: 123-45-67

Parameters

n phone numbers stored

m � cardinality of the hash function

c � length of the longest chain

O(n +m) memory is used

𝛼 = n
m is called load factor

Operations run in time O(c + 1)

You want small m and c!

Parameters

n phone numbers stored

m � cardinality of the hash function

c � length of the longest chain

O(n +m) memory is used

𝛼 = n
m is called load factor

Operations run in time O(c + 1)

You want small m and c!

Parameters

n phone numbers stored

m � cardinality of the hash function

c � length of the longest chain

O(n +m) memory is used

𝛼 = n
m is called load factor

Operations run in time O(c + 1)

You want small m and c!

Parameters

n phone numbers stored

m � cardinality of the hash function

c � length of the longest chain

O(n +m) memory is used

𝛼 = n
m is called load factor

Operations run in time O(c + 1)

You want small m and c!

Parameters

n phone numbers stored

m � cardinality of the hash function

c � length of the longest chain

O(n +m) memory is used

𝛼 = n
m is called load factor

Operations run in time O(c + 1)

You want small m and c!

Parameters

n phone numbers stored

m � cardinality of the hash function

c � length of the longest chain

O(n +m) memory is used

𝛼 = n
m is called load factor

Operations run in time O(c + 1)

You want small m and c!

Parameters

n phone numbers stored

m � cardinality of the hash function

c � length of the longest chain

O(n +m) memory is used

𝛼 = n
m is called load factor

Operations run in time O(c + 1)

You want small m and c!

Good Example

0

1

2

3

4

5

6

7

O3 O7

O1

O8 O4

O2

O6

O5

m = 8

c = 2

Bad Example

0

1

2

3

4

5

6

7

O3 O7 O1 O8 O4 O2 O6 O5

m = 8

c = 8

First Digits

For the map from phone numbers to

names, select m = 1000

Hash function: take �rst three digits

h(800-123-45-67) = 800

Problem: area code

h(425-234-55-67) =

h(425-123-45-67) =

h(425-223-23-23) = · · · = 425

First Digits

For the map from phone numbers to

names, select m = 1000

Hash function: take �rst three digits

h(800-123-45-67) = 800

Problem: area code

h(425-234-55-67) =

h(425-123-45-67) =

h(425-223-23-23) = · · · = 425

First Digits

For the map from phone numbers to

names, select m = 1000

Hash function: take �rst three digits

h(800-123-45-67) = 800

Problem: area code

h(425-234-55-67) =

h(425-123-45-67) =

h(425-223-23-23) = · · · = 425

First Digits

For the map from phone numbers to

names, select m = 1000

Hash function: take �rst three digits

h(800-123-45-67) = 800

Problem: area code

h(425-234-55-67) =

h(425-123-45-67) =

h(425-223-23-23) = · · · = 425

First Digits

For the map from phone numbers to

names, select m = 1000

Hash function: take �rst three digits

h(800-123-45-67) = 800

Problem: area code

h(425-234-55-67) =

h(425-123-45-67) =

h(425-223-23-23) = · · · = 425

Last Digits

Select m = 1000

Hash function: take last three digits

h(800-123-45-67) = 567

Problem if many phone numbers end

with three zeros

Last Digits

Select m = 1000

Hash function: take last three digits

h(800-123-45-67) = 567

Problem if many phone numbers end

with three zeros

Last Digits

Select m = 1000

Hash function: take last three digits

h(800-123-45-67) = 567

Problem if many phone numbers end

with three zeros

Last Digits

Select m = 1000

Hash function: take last three digits

h(800-123-45-67) = 567

Problem if many phone numbers end

with three zeros

Random Value

Select m = 1000

Hash function: random number between

0 and 999

Uniform distribution of hash values

Di�erent value when hash function

called again � we won't be able to �nd

anything!

Hash function must be deterministic

Random Value

Select m = 1000

Hash function: random number between

0 and 999

Uniform distribution of hash values

Di�erent value when hash function

called again � we won't be able to �nd

anything!

Hash function must be deterministic

Random Value

Select m = 1000

Hash function: random number between

0 and 999

Uniform distribution of hash values

Di�erent value when hash function

called again � we won't be able to �nd

anything!

Hash function must be deterministic

Random Value

Select m = 1000

Hash function: random number between

0 and 999

Uniform distribution of hash values

Di�erent value when hash function

called again � we won't be able to �nd

anything!

Hash function must be deterministic

Random Value

Select m = 1000

Hash function: random number between

0 and 999

Uniform distribution of hash values

Di�erent value when hash function

called again � we won't be able to �nd

anything!

Hash function must be deterministic

Good Hash Functions

Deterministic

Fast to compute

Distributes keys well into di�erent cells

Few collisions

No Universal Hash Function

Lemma

If number of possible keys is big (|U | ≫ m),

for any hash function h there is a bad input

resulting in many collisions.

U

Um = 3

h(k) = 0 h(k) = 1
h(k) = 2

Um = 3

h(k) = 0 h(k) = 1
h(k) = 2

h(k) = 1

Um = 3

h(k) = 0 h(k) = 1
h(k) = 2

h(k) = 1

42%

Outline

1 Good Hash Functions

2 Universal Family

3 Hashing Integers

4 Hashing Strings

Idea

Remember QuickSort?

Choosing random pivot helped

Use randomization!

De�ne a family (set) of hash functions

Choose random function from the family

Idea

Remember QuickSort?

Choosing random pivot helped

Use randomization!

De�ne a family (set) of hash functions

Choose random function from the family

Idea

Remember QuickSort?

Choosing random pivot helped

Use randomization!

De�ne a family (set) of hash functions

Choose random function from the family

Idea

Remember QuickSort?

Choosing random pivot helped

Use randomization!

De�ne a family (set) of hash functions

Choose random function from the family

Idea

Remember QuickSort?

Choosing random pivot helped

Use randomization!

De�ne a family (set) of hash functions

Choose random function from the family

Universal Family
Definition

Let U be the universe � the set of all

possible keys.

A set of hash functions

ℋ = {h : U → {0, 1, 2, . . . ,m − 1}}

is called a universal family if for any two keys

x , y ∈ U , x ̸= y the probability of collision

Pr [h(x) = h(y)] ≤ 1

m

.

Universal Family
Definition

Let U be the universe � the set of all

possible keys. A set of hash functions

ℋ = {h : U → {0, 1, 2, . . . ,m − 1}}

is called a universal family if for any two keys

x , y ∈ U , x ̸= y the probability of collision

Pr [h(x) = h(y)] ≤ 1

m

.

Universal Family
Definition

Let U be the universe � the set of all

possible keys. A set of hash functions

ℋ = {h : U → {0, 1, 2, . . . ,m − 1}}

is called a universal family if

for any two keys

x , y ∈ U , x ̸= y the probability of collision

Pr [h(x) = h(y)] ≤ 1

m

.

Universal Family
Definition

Let U be the universe � the set of all

possible keys. A set of hash functions

ℋ = {h : U → {0, 1, 2, . . . ,m − 1}}

is called a universal family if for any two keys

x , y ∈ U , x ̸= y the probability of collision

Pr [h(x) = h(y)] ≤ 1

m

.

Universal Family

Pr [h(x) = h(y)] ≤ 1

m

means that a collision h(x) = h(y) on

selected keys x and y , x ̸= y happens for no

more than 1

m of all hash functions h ∈ ℋ.

How Randomization Works

h(x) = random({0, 1, 2, . . . ,m − 1})
gives probability of collision exactly 1

m .

It is not deterministic � can't use it.

All hash functions in ℋ are deterministic

Select a random function h from ℋ
Fixed h is used throughout the algorithm

How Randomization Works

h(x) = random({0, 1, 2, . . . ,m − 1})
gives probability of collision exactly 1

m .

It is not deterministic � can't use it.

All hash functions in ℋ are deterministic

Select a random function h from ℋ
Fixed h is used throughout the algorithm

How Randomization Works

h(x) = random({0, 1, 2, . . . ,m − 1})
gives probability of collision exactly 1

m .

It is not deterministic � can't use it.

All hash functions in ℋ are deterministic

Select a random function h from ℋ
Fixed h is used throughout the algorithm

How Randomization Works

h(x) = random({0, 1, 2, . . . ,m − 1})
gives probability of collision exactly 1

m .

It is not deterministic � can't use it.

All hash functions in ℋ are deterministic

Select a random function h from ℋ

Fixed h is used throughout the algorithm

How Randomization Works

h(x) = random({0, 1, 2, . . . ,m − 1})
gives probability of collision exactly 1

m .

It is not deterministic � can't use it.

All hash functions in ℋ are deterministic

Select a random function h from ℋ
Fixed h is used throughout the algorithm

Running Time

Lemma

If h is chosen randomly from a universal

family, the average length of the longest

chain c is O(1 + 𝛼), where 𝛼 = n
m is the

load factor of the hash table.

Corollary

If h is from universal family, operations with

hash table run on average in time O(1 + 𝛼).

Choosing Hash Table Size

Control amount of memory used with m

Ideally, load factor 0.5 < 𝛼 < 1

Use O(m) = O(n𝛼) = O(n) memory to

store n keys

Operations run in time

O(1 + 𝛼) = O(1) on average

Choosing Hash Table Size

Control amount of memory used with m

Ideally, load factor 0.5 < 𝛼 < 1

Use O(m) = O(n𝛼) = O(n) memory to

store n keys

Operations run in time

O(1 + 𝛼) = O(1) on average

Choosing Hash Table Size

Control amount of memory used with m

Ideally, load factor 0.5 < 𝛼 < 1

Use O(m) = O(n𝛼) = O(n) memory to

store n keys

Operations run in time

O(1 + 𝛼) = O(1) on average

Choosing Hash Table Size

Control amount of memory used with m

Ideally, load factor 0.5 < 𝛼 < 1

Use O(m) = O(n𝛼) = O(n) memory to

store n keys

Operations run in time

O(1 + 𝛼) = O(1) on average

Dynamic Hash Tables

What if number of keys n is unknown in

advance?

Start with very big hash table?

You will waste a lot of memory

Copy the idea of dynamic arrays!

Resize the hash table when 𝛼 becomes

too large

Choose new hash function and rehash all

the objects

Dynamic Hash Tables

What if number of keys n is unknown in

advance?

Start with very big hash table?

You will waste a lot of memory

Copy the idea of dynamic arrays!

Resize the hash table when 𝛼 becomes

too large

Choose new hash function and rehash all

the objects

Dynamic Hash Tables

What if number of keys n is unknown in

advance?

Start with very big hash table?

You will waste a lot of memory

Copy the idea of dynamic arrays!

Resize the hash table when 𝛼 becomes

too large

Choose new hash function and rehash all

the objects

Dynamic Hash Tables

What if number of keys n is unknown in

advance?

Start with very big hash table?

You will waste a lot of memory

Copy the idea of dynamic arrays!

Resize the hash table when 𝛼 becomes

too large

Choose new hash function and rehash all

the objects

Dynamic Hash Tables

What if number of keys n is unknown in

advance?

Start with very big hash table?

You will waste a lot of memory

Copy the idea of dynamic arrays!

Resize the hash table when 𝛼 becomes

too large

Choose new hash function and rehash all

the objects

Dynamic Hash Tables

What if number of keys n is unknown in

advance?

Start with very big hash table?

You will waste a lot of memory

Copy the idea of dynamic arrays!

Resize the hash table when 𝛼 becomes

too large

Choose new hash function and rehash all

the objects

Keep load factor below 0.9:

Rehash(T)

loadFactor ← T .numberOfKeys
T .size

if loadFactor > 0.9:
Create Tnew of size 2× T .size
Choose hnew with cardinality Tnew .size
For each object O in T:

Insert O in Tnew using hnew
T ← Tnew , h← hnew

Rehash Running Time

You should call Rehash after each operation

with the hash table

Similarly to dynamic arrays, single rehashing

takes O(n) time, but amortized running time

of each operation with hash table is still O(1)

on average, because rehashing will be rare

Outline

1 Good Hash Functions

2 Universal Family

3 Hashing Integers

4 Hashing Strings

Take phone numbers up to length 7, for

example 148-25-67

Convert phone numbers to integers from

0 to 107 − 1 = 9 999 999:

148-25-67→ 1 482 567

Choose prime number bigger than 107,

e.g. p = 10 000 019

Choose hash table size, e.g. m = 1 000

Take phone numbers up to length 7, for

example 148-25-67

Convert phone numbers to integers from

0 to 107 − 1 = 9 999 999:

148-25-67→ 1 482 567

Choose prime number bigger than 107,

e.g. p = 10 000 019

Choose hash table size, e.g. m = 1 000

Take phone numbers up to length 7, for

example 148-25-67

Convert phone numbers to integers from

0 to 107 − 1 = 9 999 999:

148-25-67→ 1 482 567

Choose prime number bigger than 107,

e.g. p = 10 000 019

Choose hash table size, e.g. m = 1 000

Take phone numbers up to length 7, for

example 148-25-67

Convert phone numbers to integers from

0 to 107 − 1 = 9 999 999:

148-25-67→ 1 482 567

Choose prime number bigger than 107,

e.g. p = 10 000 019

Choose hash table size, e.g. m = 1 000

Hashing Integers

Lemma

ℋp =
{︀
ha,bp (x) = ((ax + b) mod p) mod m

}︀
for all a, b : 1 ≤ a ≤ p − 1, 0 ≤ b ≤ p − 1

is a universal family

Hashing Phone Numbers

Example

Select a = 34, b = 2, so h = h34,2p and

consider x = 1 482 567 corresponding to

phone number 148-25-67. p = 10 000 019.

(34× 1482567+ 2) mod 10000019 = 407185

407185 mod 1000 = 185

h(x) = 185

Hashing Phone Numbers

Example

Select a = 34, b = 2, so h = h34,2p and

consider x = 1 482 567 corresponding to

phone number 148-25-67. p = 10 000 019.

(34× 1482567+ 2) mod 10000019 = 407185

407185 mod 1000 = 185

h(x) = 185

Hashing Phone Numbers

Example

Select a = 34, b = 2, so h = h34,2p and

consider x = 1 482 567 corresponding to

phone number 148-25-67. p = 10 000 019.

(34× 1482567+ 2) mod 10000019 = 407185

407185 mod 1000 = 185

h(x) = 185

Hashing Phone Numbers

Example

Select a = 34, b = 2, so h = h34,2p and

consider x = 1 482 567 corresponding to

phone number 148-25-67. p = 10 000 019.

(34× 1482567+ 2) mod 10000019 = 407185

407185 mod 1000 = 185

h(x) = 185

General Case

De�ne maximum length L of a phone

number

Convert phone numbers to integers from

0 to 10L − 1

Choose prime number p > 10L

Choose hash table size m

Choose random hash function from

universal family ℋp (choose random

a ∈ [1, p − 1] and b ∈ [0, p − 1])

General Case

De�ne maximum length L of a phone

number

Convert phone numbers to integers from

0 to 10L − 1

Choose prime number p > 10L

Choose hash table size m

Choose random hash function from

universal family ℋp (choose random

a ∈ [1, p − 1] and b ∈ [0, p − 1])

General Case

De�ne maximum length L of a phone

number

Convert phone numbers to integers from

0 to 10L − 1

Choose prime number p > 10L

Choose hash table size m

Choose random hash function from

universal family ℋp (choose random

a ∈ [1, p − 1] and b ∈ [0, p − 1])

General Case

De�ne maximum length L of a phone

number

Convert phone numbers to integers from

0 to 10L − 1

Choose prime number p > 10L

Choose hash table size m

Choose random hash function from

universal family ℋp (choose random

a ∈ [1, p − 1] and b ∈ [0, p − 1])

General Case

De�ne maximum length L of a phone

number

Convert phone numbers to integers from

0 to 10L − 1

Choose prime number p > 10L

Choose hash table size m

Choose random hash function from

universal family ℋp (choose random

a ∈ [1, p − 1] and b ∈ [0, p − 1])

Outline

1 Good Hash Functions

2 Universal Family

3 Hashing Integers

4 Hashing Strings

Lookup Phone Numbers by Name

Now we need to implement the Map

from names to phone numbers

Can also use chaining

Need a hash function de�ned on names

Hash arbitrary strings of characters

You will learn how string hashing is

implemented in Java!

Lookup Phone Numbers by Name

Now we need to implement the Map

from names to phone numbers

Can also use chaining

Need a hash function de�ned on names

Hash arbitrary strings of characters

You will learn how string hashing is

implemented in Java!

Lookup Phone Numbers by Name

Now we need to implement the Map

from names to phone numbers

Can also use chaining

Need a hash function de�ned on names

Hash arbitrary strings of characters

You will learn how string hashing is

implemented in Java!

Lookup Phone Numbers by Name

Now we need to implement the Map

from names to phone numbers

Can also use chaining

Need a hash function de�ned on names

Hash arbitrary strings of characters

You will learn how string hashing is

implemented in Java!

Lookup Phone Numbers by Name

Now we need to implement the Map

from names to phone numbers

Can also use chaining

Need a hash function de�ned on names

Hash arbitrary strings of characters

You will learn how string hashing is

implemented in Java!

String Length Notation

Definition

Denote by |S | the length of string S .

Examples

|“a”| = 1

|“ab”| = 2

|“abcde”| = 5

Hashing Strings

Given a string S , compute its hash value

S = S [0]S [1] . . . S [|S | − 1], where S [i]

� individual characters

We should use all the characters in the

hash function

Otherwise there will be many collisions:

For example, if S [0] is not used,

h(“aa”) = h(“ba”) = · · · = h(“za”)

Hashing Strings

Given a string S , compute its hash value

S = S [0]S [1] . . . S [|S | − 1], where S [i]

� individual characters

We should use all the characters in the

hash function

Otherwise there will be many collisions:

For example, if S [0] is not used,

h(“aa”) = h(“ba”) = · · · = h(“za”)

Hashing Strings

Given a string S , compute its hash value

S = S [0]S [1] . . . S [|S | − 1], where S [i]

� individual characters

We should use all the characters in the

hash function

Otherwise there will be many collisions:

For example, if S [0] is not used,

h(“aa”) = h(“ba”) = · · · = h(“za”)

Hashing Strings

Given a string S , compute its hash value

S = S [0]S [1] . . . S [|S | − 1], where S [i]

� individual characters

We should use all the characters in the

hash function

Otherwise there will be many collisions:

For example, if S [0] is not used,

h(“aa”) = h(“ba”) = · · · = h(“za”)

Hashing Strings

Given a string S , compute its hash value

S = S [0]S [1] . . . S [|S | − 1], where S [i]

� individual characters

We should use all the characters in the

hash function

Otherwise there will be many collisions:

For example, if S [0] is not used,

h(“aa”) = h(“ba”) = · · · = h(“za”)

Preparation

Convert each character S [i] to integer

code

ASCII code, Unicode, etc.

Choose big prime number p

Preparation

Convert each character S [i] to integer

code

ASCII code, Unicode, etc.

Choose big prime number p

Preparation

Convert each character S [i] to integer

code

ASCII code, Unicode, etc.

Choose big prime number p

Polynomial Hashing

Definition

Family of hash functions

𝒫p =

⎧⎨⎩hxp(S) =

|S |−1∑︁
i=0

S [i]x i mod p

⎫⎬⎭
with a �xed prime p and all 1 ≤ x ≤ p − 1 is

called polynomial.

PolyHash(S , p, x)

hash ← 0

for i from |S | − 1 down to 0:

hash← (hash× x + S [i]) mod p

return hash

Example: |S | = 3

1 hash = 0

2 hash = S [2] mod p

3 hash = S [1] + S [2]x mod p

4 hash = S [0] + S [1]x + S [2]x2 mod p

Java Implementation

The method hashCode of the built-in Java

class String is very similar to our

PolyHash, it just uses x = 31 and for

technical reasons avoids the (mod p)

operator.

You now know how a function that is used

trillions of times a day in many thousands of

programs is implemented!

Java Implementation

The method hashCode of the built-in Java

class String is very similar to our

PolyHash, it just uses x = 31 and for

technical reasons avoids the (mod p)

operator.

You now know how a function that is used

trillions of times a day in many thousands of

programs is implemented!

Lemma

For any two di�erent strings s1 and s2 of

length at most L + 1, if you choose h from

𝒫p at random (by selecting a random

x ∈ [1, p − 1]), the probability of collision

Pr [h(s1) = h(s2)] is at most L
p .

Proof idea

This follows from the fact that the equation

a0+ a1x + a2x
2+ · · ·+ aLx

L = 0 (mod p) for

prime p has at most L di�erent solutions x .

Cardinality Fix

For use in a hash table of size m, we need a

hash function of cardinality m.

First apply random h from 𝒫p and then hash

the resulting value again using integer

hashing. Denote the resulting function by hm.

Lemma

For any two di�erent strings s1 and s2 of

length at most L + 1 and cardinality m, the

probability of collision Pr [hm(s1) = hm(s2)] is

at most 1

m + L
p .

Polynomial Hashing

Corollary

If p > mL, for any two different strings s1
and s2 of length at most L+ 1 the probability

of collision Pr [hm(s1) = hm(s2)] is O(1m).

Proof
1

m + L
p < 1

m + L
mL = 1

m + 1

m = 2

m = O(1m)

Running Time

For big enough p again have

c = O(1 + 𝛼)

Computing PolyHash(S) runs in time

O(|S |)
If lengths of the names in the phone

book are bounded by constant L,

computing h(S) takes O(L) = O(1)

time

Running Time

For big enough p again have

c = O(1 + 𝛼)

Computing PolyHash(S) runs in time

O(|S |)

If lengths of the names in the phone

book are bounded by constant L,

computing h(S) takes O(L) = O(1)

time

Running Time

For big enough p again have

c = O(1 + 𝛼)

Computing PolyHash(S) runs in time

O(|S |)
If lengths of the names in the phone

book are bounded by constant L,

computing h(S) takes O(L) = O(1)

time

Conclusion

You learned how to hash integers and

strings

Phone book can be implemented as two

hash tables

Mapping phone numbers to names and

back

Search and modi�cation run on average

in O(1)!

	Good Hash Functions
	Universal Family
	Hashing Integers
	Hashing Strings

