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Searching for Patterns
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sentence), �nd all occurrences of P in T .
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Detect �les infected by virus � code
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Substring Notation

Definition

Denote by S [i ..j ] the substring of string S

starting in position i and ending in position j .

Examples

If S = “abcde”, then

S [0..4] = “abcde”,

S [1..3] = “bcd”,

S [2..2] = “c”.



Find Pattern in Text

Input: Strings T and P .

Output: All such positions i in T ,

0 ≤ i ≤ |T | − |P | that
T [i ..i + |P | − 1] = P .



Naive Algorithm

For each position i from 0 to |T | − |P |,
check character-by-character whether

T [i ..i + |P | − 1] = P or not.

If yes, append i to the result.



AreEqual(S1, S2)

if |S1| ≠ |S2|:
return False

for i from 0 to |S1| − 1:

if S1[i ] ̸= S2[i ]:

return False

return True



FindPatternNaive(T ,P)

result ← empty list

for i from 0 to |T | − |P |:
if AreEqual(T [i ..i + |P | − 1],P):

result.Append(i)

return result



Running Time

Lemma

Running time of FindPatternNaive(T ,P)

is O(|T ||P |).

Proof

Each AreEqual call is O(|P |)
|T | − |P |+ 1 calls of AreEqual total to

O((|T | − |P | + 1)|P |) = O(|T ||P |)
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Bad Example

If T = “aaa . . . aa” and P = “aaa . . . ab”,

and |T | ≫ |P |, then for each position i in T

from 0 to |T | − |P | the call to AreEqual

has to make all |P | comparisons.

This is because T [i ..i + |P | − 1] and P di�er

only in the last character.

Thus, in this case the naive algorithm runs in

time Θ(|T ||P |).
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Need to compare P with all substrings S

of T of length |P |

Idea: use hashing to quickly compare P

with substrings of T



Rabin-Karp’s Algorithm

Need to compare P with all substrings S

of T of length |P |
Idea: use hashing to quickly compare P

with substrings of T



Rabin-Karp’s Algorithm

If h(P) ̸= h(S), then de�nitely P ̸= S

If h(P) = h(S), call AreEqual(P , S)

Use polynomial hash family 𝒫p with

prime p

If P ̸= S , the probability

Pr [h(P) = h(S)] is at most |P |p for

polynomial hashing
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RabinKarp(T ,P)

p ← big prime, x ← random(1, p − 1)

result ← empty list

pHash ← PolyHash(P , p, x)

for i from 0 to |T | − |P |:
tHash ← PolyHash(T [i ..i+|P |−1], p, x)
if pHash ̸= tHash:

continue

if AreEqual(T [i ..i + |P | − 1],P):

result.Append(i)

return result



False Alarms

�False alarm� is the event when P is

compared with T [i ..i + |P | − 1], but

P ̸= T [i ..i + |P | − 1].

The probability of �false alarm� is at most |P |p

On average, the total number of �false

alarms� will be (|T | − |P | + 1) |P |p , which can

be made small by selecting p ≫ |T ||P |.



Running Time without AreEqual

h(P) is computed in O(|P |)

h(T [i ..i + |P | − 1]) is computed in

O(|P |), |T | − |P | + 1 times

O(|P |) + O((|T | − |P | + 1)|P |) =
O(|T ||P |)
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AreEqual Running Time

AreEqual is computed in O(|P |)

AreEqual is called only when

h(P) = h(T [i ..i + |P | − 1]), meaning

that either an occurrence of P is found

or a �false alarm� happened

By selecting p ≫ |T ||P | we make the

number of �false alarms� negligible
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Total Running Time

If P is found q times in T , then total

time spent in AreEqual is

O((q + (|T |−|P |+1)|P |
p )|P |) = O(q|P |) for

p ≫ |T ||P |

Total running time is

O(|T ||P |) + O(q|P |) = O(|T ||P |) as
q ≤ |T |
Same as naive algorithm, but can be

improved!
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Improving Running Time

h(S) =

|S |−1∑︁
i=0

S [i ]x i mod p

h(T [i ..i + |P | − 1]) =

i+|P |−1∑︁
j=i

T [j ]x j−i mod p

Idea: polynomial hashes of two consecutive

substrings of T are very similar

For each i denote h(T [i ..i + |P | − 1]) by H [i ]
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Recurrence of Hashes
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PrecomputeHashes(T , |P |, p, x)
H ← array of length |T | − |P |+ 1

S ← T [|T | − |P |..|T | − 1]
H[|T | − |P |]← PolyHash(S , p, x)
y ← 1

for i from 1 to |P |:
y ← (y × x) mod p

for i from |T | − |P | − 1 down to 0:

H[i ]← (xH[i + 1] + T [i ]− yT [i + |P |]) mod p
return H

O(|P |+|P |+|T | − |P |) = O(|T | + |P |)
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Precomputing H

PolyHash is called once � O(|P |)
First for loop runs in O(|P |)
Second for loop runs in O(|T | − |P |)
Total precomputation time O(|T |+ |P |)



RabinKarp(T ,P)

p ← big prime, x ← random(1, p − 1)

result ← empty list
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for i from 0 to |T | − |P |:

if pHash ̸= H [i ]:

continue
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result.Append(i)

return result



Improved Running Time

h(P) is computed in O(|P |)

PrecomputeHashes runs in

O(|T | + |P |)
Total time spent in AreEqual is

O(q|P |) on average where q is the

number of occurrences of P in T

Average running time

O(|T | + (q + 1)|P |)
Usually q is small, so this is much less

than O(|T ||P |)
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and Maps

Possible to search and modify hash

tables in O(1) on average!

Must use good hash families and

randomization

Hashes are also useful while working

with strings and texts

There are many more applications in

distributed systems and data science
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