Hash Tables: String Search

Michael Levin

Higher School of Economics

Data Structures
 Data Structures and Algorithms

Outline

(1) Search Pattern in Text (2) Rabin-Karp's Algorithm
(3) Improving Running Time

Searching for Patterns

Given a text T (book, website, facebook profile) and a pattern P (word, phrase, sentence), find all occurrences of P in T.

Searching for Patterns

Given a text T (book, website, facebook profile) and a pattern P (word, phrase, sentence), find all occurrences of P in T.

Examples

- Your name on a website

Searching for Patterns

Given a text T (book, website, facebook profile) and a pattern P (word, phrase, sentence), find all occurrences of P in T.

Examples

■ Your name on a website

- Twitter messages about your company

Searching for Patterns

Given a text T (book, website, facebook profile) and a pattern P (word, phrase, sentence), find all occurrences of P in T.

Examples

- Your name on a website
- Twitter messages about your company
- Detect files infected by virus - code patterns

Substring Notation

Definition

Denote by $S[i . . j]$ the substring of string S starting in position i and ending in position j.

Examples

If $S=$ 'abcde"', then
$S[0 . .4]=$ "abcde" ,
$S[1 . .3]=$ " $b c d$ ",
$S[2 . .2]=$ " c ".

Find Pattern in Text

Input: Strings T and P.
Output: All such positions i in T,

$$
\begin{aligned}
& 0 \leq i \leq|T|-|P| \text { that } \\
& T[i . . i+|P|-1]=P .
\end{aligned}
$$

Naive Algorithm

For each position i from 0 to $|T|-|P|$, check character-by-character whether $T[i . . i+|P|-1]=P$ or not. If yes, append i to the result.

AreEqual $\left(S_{1}, S_{2}\right)$

if $\left|S_{1}\right| \neq\left|S_{2}\right|$:
return False
for i from 0 to $\left|S_{1}\right|-1$: if $S_{1}[i] \neq S_{2}[i]$: return False
return True

FindPatternNaive(T, P)

result \leftarrow empty list
for i from 0 to $|T|-|P|$:
if AreEqual($T[i . . i+|P|-1], P)$: result.Append (i)
return result

Running Time

Lemma

Running time of FindPatternNaive (T, P)
is $O(|T||P|)$.

Running Time

Lemma

Running time of FindPatternNaive (T, P) is $O(|T||P|)$.

Proof

- Each AreEqual call is $O(|P|)$

Running Time

Lemma

Running time of FindPatternNaive (T, P) is $O(|T||P|)$.

Proof

- Each AreEqual call is $O(|P|)$
$\square|T|-|P|+1$ calls of AreEqual total to $O((|T|-|P|+1)|P|)=O(|T||P|)$ \square

Bad Example

If $T=$ "aaa \ldots aa" and $P=$ "'aaa \ldots ab", and $|T| \gg|P|$, then for each position i in T from 0 to $|T|-|P|$ the call to AreEqual has to make all $|P|$ comparisons.

This is because $T[i . . i+|P|-1]$ and P differ only in the last character.

Thus, in this case the naive algorithm runs in time $\Theta(|T||P|)$.

Outline

(1) Search Pattern in Text

(2) Rabin-Karp's Algorithm
(3) Improving Running Time

Rabin-Karp's Algorithm

- Need to compare P with all substrings S of T of length $|P|$

Rabin-Karp's Algorithm

- Need to compare P with all substrings S of T of length $|P|$
■ Idea: use hashing to quickly compare P with substrings of T

Rabin-Karp's Algorithm

- If $h(P) \neq h(S)$, then definitely $P \neq S$

Rabin-Karp's Algorithm

- If $h(P) \neq h(S)$, then definitely $P \neq S$
- If $h(P)=h(S)$, call AreEqual (P, S)

Rabin-Karp's Algorithm

- If $h(P) \neq h(S)$, then definitely $P \neq S$
- If $h(P)=h(S)$, call $\operatorname{AreEqual}(P, S)$
- Use polynomial hash family \mathcal{P}_{p} with prime p

Rabin-Karp's Algorithm

- If $h(P) \neq h(S)$, then definitely $P \neq S$
- If $h(P)=h(S)$, call $\operatorname{AreEqual}(P, S)$
- Use polynomial hash family \mathcal{P}_{ρ} with prime p
- If $P \neq S$, the probability
$\operatorname{Pr}[h(P)=h(S)]$ is at most $\frac{|P|}{p}$ for polynomial hashing

RabinKarp (T, P)

$p \leftarrow \operatorname{big}$ prime, $x \leftarrow \operatorname{random}(1, p-1)$
result \leftarrow empty list
pHash $\leftarrow \operatorname{PolyHash}(P, p, x)$ for i from 0 to $|T|-|P|$: tHash $\leftarrow \operatorname{PolyHash}(T[i . . i+|P|-1], p, x)$ if pHash \neq tHash:
continue
if AreEqual($T[i . . i+|P|-1], P)$: result.Append (i)
return result

False Alarms

"False alarm" is the event when P is compared with $T[i . . i+|P|-1]$, but $P \neq T[i . . i+|P|-1]$.
The probability of "false alarm" is at most $\frac{|P|}{p}$
On average, the total number of "false alarms" will be $(|T|-|P|+1) \frac{|P|}{p}$, which can be made small by selecting $p \gg|T||P|$.

Running Time without AreEqual

- $h(P)$ is computed in $O(|P|)$

Running Time without AreEqual

- $h(P)$ is computed in $O(|P|)$
- $h(T[i . . i+|P|-1])$ is computed in
$O(|P|),|T|-|P|+1$ times

Running Time without AreEqual

- $h(P)$ is computed in $O(|P|)$
- $h(T[i . . i+|P|-1])$ is computed in
$O(|P|),|T|-|P|+1$ times
- $O(|P|)+O((|T|-|P|+1)|P|)=$ $O(|T||P|)$

AreEqual Running Time

- AreEqual is computed in $O(|P|)$

AreEqual Running Time

- AreEqual is computed in $O(|P|)$
- AreEqual is called only when $h(P)=h(T[i . . i+|P|-1])$, meaning that either an occurrence of P is found or a "false alarm" happened

AreEqual Running Time

- AreEqual is computed in $O(|P|)$
- AreEqual is called only when $h(P)=h(T[i . . i+|P|-1])$, meaning that either an occurrence of P is found or a "false alarm" happened
- By selecting $p \gg|T||P|$ we make the number of "false alarms" negligible

Total Running Time

- If P is found q times in T, then total time spent in AreEqual is
$O\left(\left(q+\frac{(|T|-|P|+1)|P|}{p}\right)|P|\right)=O(q|P|)$ for $p \gg|T||P|$

Total Running Time

- If P is found q times in T, then total time spent in AreEqual is
$O\left(\left(q+\frac{(|T|-|P|+1)|P|}{p}\right)|P|\right)=O(q|P|)$ for $p \gg|T||P|$
- Total running time is
$O(|T||P|)+O(q|P|)=O(|T||P|)$ as
$q \leq|T|$

Total Running Time

- If P is found q times in T, then total time spent in AreEqual is
$O\left(\left(q+\frac{(|T|-|P|+1)|P|}{p}\right)|P|\right)=O(q|P|)$ for
$p \gg|T||P|$
- Total running time is
$O(|T||P|)+O(q|P|)=O(|T||P|)$ as
$q \leq|T|$
- Same as naive algorithm, but can be improved!

Outline

(1) Search Pattern in Text

(2) Rabin-Karp's Algorithm

(3) Improving Running Time

Improving Running Time

$$
h(S)=\sum_{i=0}^{|S|-1} S[i] x^{i} \bmod p
$$

Improving Running Time

$$
\begin{gathered}
h(S)=\sum_{i=0}^{|S|-1} S[i] x^{i} \bmod p \\
h(T[i . . i+|P|-1])=\sum_{j=i}^{i+|P|-1} T[j] x^{j-i} \bmod p
\end{gathered}
$$

$$
\begin{gathered}
\text { Improving Running Time } \\
h(S)=\sum_{i=0}^{|S|-1} S[j] x^{i} \bmod p \\
h(T[i . . i+|P|-1])=\sum_{j=i}^{i+|P|-1} T[j] x^{j-i} \bmod p
\end{gathered}
$$

Idea: polynomial hashes of two consecutive substrings of T are very similar

Improving Running Time

$$
h(S)=\sum_{i=0}^{|S|-1} S[i] x^{i} \bmod p
$$

$h(T[i . . i+|P|-1])=\sum_{j=i}^{i+|P|-1} T[j] x^{j-i} \bmod p$
Idea: polynomial hashes of two consecutive substrings of T are very similar

For each i denote $h(T[i . . i+|P|-1])$ by $H[i]$

Consecutive substrings

$$
\begin{aligned}
& T=\begin{array}{lllll}
T & \mathrm{~b} & \mathrm{c} & \mathrm{~b} & \mathrm{~d} \\
T^{\prime} & =\begin{array}{l|l|l|l|l|}
\hline 0 & 1 & 2 & 1 & 3 \\
\hline
\end{array} \quad|P|=3
\end{array}
\end{aligned}
$$

Consecutive substrings

$$
\begin{aligned}
& \begin{array}{l}
T= \\
T^{\prime} \\
T^{\prime}= \\
\begin{array}{|l|l|l|l|l|}
\hline 0 & 1 & c & b & 1
\end{array} \\
\hline
\end{array} \quad|P|=3 \\
& h(" c b d ")=
\end{aligned}
$$

Consecutive substrings

$$
\begin{aligned}
& h(" c b d ")=1 \quad x x^{2}
\end{aligned}
$$

Consecutive substrings

$$
\begin{aligned}
& T=a b c c c \\
& T^{\prime}=\begin{array}{|l|l|l|l|l|}
\hline 0 & 1 & 2 & 1 & 3 \\
\hline
\end{array}|P|=3 \\
& h(" c b d ")=2 \quad x 3 x^{2}
\end{aligned}
$$

Consecutive substrings

$$
\begin{aligned}
& \begin{array}{l}
T=\begin{array}{llllll}
T & b & c & b & d \\
T^{\prime} & =\begin{array}{l|l|l|l|l|}
\hline 0 & 1 & 2 & 1 & 3 \\
\hline
\end{array} \quad|P|=3
\end{array}
\end{array} \\
& h(" c b d ")=2+x+3 x^{2}
\end{aligned}
$$

Consecutive substrings

$$
h(" \mathrm{bcb} ")=
$$

$$
\begin{aligned}
& \begin{aligned}
T & =\begin{array}{llllll}
& b & c & b & d \\
T^{\prime} & =\begin{array}{l|l|l|l|l|}
\hline 0 & 1 & 2 & 1 & 3 \\
\hline
\end{array} \quad|P|=3
\end{array}
\end{aligned} \\
& h(" c b d ")=2+x+3 x^{2}
\end{aligned}
$$

Consecutive substrings

$$
\begin{aligned}
& h(" c b d ")=2+x+3 x^{2} \\
& h(" \mathrm{bcb} \text { " })=1 \quad x \quad x^{2}
\end{aligned}
$$

Consecutive substrings

$$
\begin{aligned}
& h(" c b d ")=2+x+3 x^{2} \\
& h(" \mathrm{bcb} ")=12 x x^{2}
\end{aligned}
$$

Consecutive substrings

$$
\begin{aligned}
& h(" c b d ")=2+x+3 x^{2} \\
& h(\text { "bcb" })=1+2 x+x^{2}
\end{aligned}
$$

Consecutive substrings

$$
\begin{aligned}
& \begin{array}{l}
T=\begin{array}{llllll}
T & b & c & b & d \\
T^{\prime} & =\begin{array}{l|l|l|l|l|}
\hline 0 & 1 & 2 & 1 & 3 \\
\hline
\end{array} \quad|P|=3
\end{array}
\end{array} \\
& h(" c b d ")=2+x+3 x^{2} \\
& \downarrow \times x \downarrow \times x \\
& h(\text { "bcb" })=1+2 x+x^{2}
\end{aligned}
$$

Consecutive substrings

$$
\begin{aligned}
& \begin{aligned}
T & =\begin{array}{llllll}
& b & c & b & d \\
T^{\prime} & =\begin{array}{l|l|l|l|l|}
\hline 0 & 1 & 2 & 1 & 3 \\
\hline
\end{array} \quad|P|=3
\end{array}
\end{aligned} \\
& h(" c b d ")=2+x+3 x^{2} \\
& \downarrow \times x \downarrow \times x \\
& h(\text { "bcb" })=1+2 x+x^{2} \\
& H[2]=h(\text { "cbd" })=2+x+3 x^{2}
\end{aligned}
$$

Consecutive substrings

$$
\begin{aligned}
& \begin{aligned}
T & =\begin{array}{llllll}
\text { a } & b & c & b & d \\
T^{\prime} & =\begin{array}{l|l|l|l|l|}
\hline 0 & 1 & 2 & 1 & 3 \\
\hline
\end{array} \quad|P|=3
\end{array}
\end{aligned} \\
& h(" c b d ")=2+x+3 x^{2} \\
& \downarrow \times x \downarrow \times x \\
& h(\text { "bcb" })=1+2 x+x^{2} \\
& H[2]=h(\text { "cbd" })=2+x+3 x^{2} \\
& H[1]=h(" \mathrm{bcb} ")=1+2 x+x^{2}=
\end{aligned}
$$

Consecutive substrings

$$
\begin{aligned}
& \begin{aligned}
T & =\begin{array}{llllll}
\text { a } & b & c & b & d \\
T^{\prime} & =\begin{array}{l|l|l|l|l|}
\hline 0 & 1 & 2 & 1 & 3 \\
\hline
\end{array} \quad|P|=3
\end{array}
\end{aligned} \\
& h(" c b d ")=2+x+3 x^{2} \\
& \downarrow \times x \downarrow \times x \\
& h(\text { "bcb" })=1+2 x+x^{2} \\
& H[2]=h(\text { "cbd" })=2+x+3 x^{2} \\
& H[1]=h(" \mathrm{bcb} ")=1+2 x+x^{2}= \\
& =1+x(2+x)=
\end{aligned}
$$

Consecutive substrings

$$
\begin{aligned}
& \begin{aligned}
T & =\begin{array}{llllll}
& b & c & b & d \\
T^{\prime} & =\begin{array}{l|l|l|l|l|}
\hline 0 & 1 & 2 & 1 & 3 \\
\hline
\end{array} \quad|P|=3
\end{array}
\end{aligned} \\
& h(" c b d ")=2+x+3 x^{2} \\
& \downarrow \times x \downarrow \times x \\
& h(\text { "bcb" })=1+2 x+x^{2} \\
& H[2]=h(\text { "cbd" })=2+x+3 x^{2} \\
& H[1]=h(\text { " } \mathrm{bcb} ")=1+2 x+x^{2}= \\
& =1+x(2+x)= \\
& =1+x\left(2+x+3 x^{2}\right)-3 x^{3}=
\end{aligned}
$$

Consecutive substrings

$$
\begin{aligned}
& T=a \quad b \quad c \quad b \quad d \\
& T^{\prime}=\begin{array}{|l|l|l|l|l|}
\hline 0 & 1 & 2 & 1 & 3 \\
\hline
\end{array} \quad|P|=3 \\
& h(" c b d ")=2+x+3 x^{2} \\
& \downarrow \times x \downarrow \times x \\
& h(\text { "bcb" })=1+2 x+x^{2} \\
& H[2]=h(" c b d ")=2+x+3 x^{2} \\
& H[1]=h(\text { " } \mathrm{bcb} ")=1+2 x+x^{2}= \\
& =1+x(2+x)= \\
& =1+x\left(2+x+3 x^{2}\right)-3 x^{3}= \\
& =x H[2]+1-3 x^{3}
\end{aligned}
$$

Recurrence of Hashes

$$
H[i+1]=\sum_{j=i+1}^{i+|P|} T[j] x^{j-i-1} \bmod p
$$

Recurrence of Hashes

$$
\begin{aligned}
& H[i+1]=\sum_{j=i+1}^{i+|P|} T[j] x^{j-i-1} \bmod p \\
& H[i]=\sum_{j=i}^{i+|P|-1} T[j] x^{j-i} \bmod p=
\end{aligned}
$$

Recurrence of Hashes

$$
\begin{aligned}
& H[i+1]=\sum_{j=i+1}^{i+|P|} T[j] x^{j-i-1} \bmod p \\
& H[i]=\sum_{j=i}^{i+|P|-1} T[j] x^{j-i} \bmod p= \\
& =\sum_{j=i+1}^{i+|P|} T[j] x^{j-i}+T[i]-T[i+|P|] x^{|P|} \bmod p=
\end{aligned}
$$

Recurrence of Hashes

$$
\begin{aligned}
& H[i+1]=\sum_{j=i+1}^{i+|P|} T[j] x^{j-i-1} \bmod p \\
& H[i]=\sum_{j=i}^{i+|P|-1} T[j] x^{j-i} \bmod p= \\
& =\sum_{j=i+1}^{i+|P|} T[j] x^{j-i}+T[i]-T[i+|P|] x^{|P|} \bmod p= \\
& =x \sum_{j=i+1}^{i+|P|} T[j] x^{j-i-1}+\left(T[i]-T[i+|P|] x^{|P|}\right) \bmod p
\end{aligned}
$$

Recurrence of Hashes

$$
\begin{aligned}
& H[i+1]=\sum_{j=i+1}^{i+|P|} T[j] x^{j-i-1} \bmod p \\
& H[i]=\sum_{j=i}^{i+|P|-1} T[j] x^{j-i} \bmod p= \\
& =\sum_{j=i+1}^{i+|P|} T[j] x^{j-i}+T[i]-T[i+|P|] x^{|P|} \bmod p= \\
& =x \sum_{j=i+1}^{i+|P|} T[j] x^{j-i-1}+\left(T[i]-T[i+|P|] x^{|P|}\right) \bmod p
\end{aligned}
$$

$$
H[i]=x H[i+1]+\left(T[i]-T[i+|P|] x^{|P|}\right) \bmod p
$$

PrecomputeHashes $(T,|P|, p, x)$

$H \leftarrow$ array of length $|T|-|P|+1$
$S \leftarrow T[|T|-|P| . .|T|-1]$ $H[|T|-|P|] \leftarrow$ PolyHash (S, p, x)
$y \leftarrow 1$
for i from 1 to $|P|$:
$y \leftarrow(y \times x) \bmod p$
for i from $|T|-|P|-1$ down to 0 :

$$
H[i] \leftarrow(x H[i+1]+T[i]-y T[i+|P|]) \bmod p
$$

return H

PrecomputeHashes $(T,|P|, p, x)$

$H \leftarrow$ array of length $|T|-|P|+1$
$S \leftarrow T[|T|-|P| . .|T|-1]$ $H[|T|-|P|] \leftarrow \operatorname{PolyHash}(S, p, x)$
$y \leftarrow 1$
for i from 1 to $|P|$:
$y \leftarrow(y \times x) \bmod p$
for i from $|T|-|P|-1$ down to 0 :

$$
H[i] \leftarrow(x H[i+1]+T[i]-y T[i+|P|]) \bmod p
$$

return H
$O(|P|$

PrecomputeHashes $(T,|P|, p, x)$

$H \leftarrow$ array of length $|T|-|P|+1$
$S \leftarrow T[|T|-|P| . .|T|-1]$ $H[|T|-|P|] \leftarrow \operatorname{PolyHash}(S, p, x)$
$y \leftarrow 1$
for i from 1 to $|P|$:
$y \leftarrow(y \times x) \bmod p$
for i from $|T|-|P|-1$ down to 0 :

$$
H[i] \leftarrow(x H[i+1]+T[i]-y T[i+|P|]) \bmod p
$$

return H
$O(|P|+|P|$

PrecomputeHashes $(T,|P|, p, x)$

$H \leftarrow$ array of length $|T|-|P|+1$
$S \leftarrow T[|T|-|P| . .|T|-1]$
$H[|T|-|P|] \leftarrow \operatorname{PolyHash}(S, p, x)$
$y \leftarrow 1$
for i from 1 to $|P|$:
$y \leftarrow(y \times x) \bmod p$
for i from $|T|-|P|-1$ down to 0 :

$$
H[i] \leftarrow(x H[i+1]+T[i]-y T[i+|P|]) \bmod p
$$

return H
$O(|P|+|P|+|T|-|P|)=O(|T|+|P|)$

Precomputing H

- PolyHash is called once $-O(|P|)$
- First for loop runs in $O(|P|)$
- Second for loop runs in $O(|T|-|P|)$
- Total precomputation time $O(|T|+|P|)$

RabinKarp (T, P)

$p \leftarrow \operatorname{big}$ prime, $x \leftarrow \operatorname{random}(1, p-1)$
result \leftarrow empty list
pHash $\leftarrow \operatorname{PolyHash}(P, p, x)$ $H \leftarrow \operatorname{PrecomputeHashes}(T,|P|, p, x)$ for i from 0 to $|T|-|P|$:
if pHash $\neq H[i]$:
continue
if AreEqual($T[i . . i+|P|-1], P)$: result.Append (i)
return result

Improved Running Time - $h(P)$ is computed in $O(|P|)$

Improved Running Time

- $h(P)$ is computed in $O(|P|)$
- PrecomputeHashes runs in
$O(|T|+|P|)$

Improved Running Time

- $h(P)$ is computed in $O(|P|)$
- PrecomputeHashes runs in $O(|T|+|P|)$
- Total time spent in AreEqual is $O(q|P|)$ on average where q is the number of occurrences of P in T

Improved Running Time

- $h(P)$ is computed in $O(|P|)$
- PrecomputeHashes runs in $O(|T|+|P|)$
- Total time spent in AreEqual is $O(q|P|)$ on average where q is the number of occurrences of P in T
- Average running time
$O(|T|+(q+1)|P|)$

Improved Running Time

- $h(P)$ is computed in $O(|P|)$
- PrecomputeHashes runs in $O(|T|+|P|)$
- Total time spent in AreEqual is $O(q|P|)$ on average where q is the number of occurrences of P in T
- Average running time
$O(|T|+(q+1)|P|)$
- Usually q is small, so this is much less than $O(|T||P|)$

Conclusion

- Hash tables are useful for storing Sets and Maps

Conclusion

- Hash tables are useful for storing Sets and Maps
- Possible to search and modify hash tables in $O(1)$ on average!

Conclusion

- Hash tables are useful for storing Sets and Maps
- Possible to search and modify hash tables in $O(1)$ on average!
- Must use good hash families and randomization

Conclusion

- Hash tables are useful for storing Sets and Maps
- Possible to search and modify hash tables in $O(1)$ on average!
- Must use good hash families and randomization
- Hashes are also useful while working with strings and texts

Conclusion

- Hash tables are useful for storing Sets and Maps
- Possible to search and modify hash tables in $O(1)$ on average!
- Must use good hash families and randomization
- Hashes are also useful while working with strings and texts
- There are many more applications in distributed systems and data science

