
Hash Tables:

String Search

Michael Levin

Higher School of Economics

Data Structures

Data Structures and Algorithms

https://goo.gl/ZVOAWt
https://goo.gl/KAfKJT

Outline

1 Search Pattern in Text

2 Rabin-Karp's Algorithm

3 Improving Running Time

Searching for Patterns

Given a text T (book, website, facebook

pro�le) and a pattern P (word, phrase,

sentence), �nd all occurrences of P in T .

Examples

Your name on a website

Twitter messages about your company

Detect �les infected by virus � code

patterns

Searching for Patterns

Given a text T (book, website, facebook

pro�le) and a pattern P (word, phrase,

sentence), �nd all occurrences of P in T .

Examples

Your name on a website

Twitter messages about your company

Detect �les infected by virus � code

patterns

Searching for Patterns

Given a text T (book, website, facebook

pro�le) and a pattern P (word, phrase,

sentence), �nd all occurrences of P in T .

Examples

Your name on a website

Twitter messages about your company

Detect �les infected by virus � code

patterns

Searching for Patterns

Given a text T (book, website, facebook

pro�le) and a pattern P (word, phrase,

sentence), �nd all occurrences of P in T .

Examples

Your name on a website

Twitter messages about your company

Detect �les infected by virus � code

patterns

Substring Notation

Definition

Denote by S [i ..j] the substring of string S

starting in position i and ending in position j .

Examples

If S = “abcde”, then

S [0..4] = “abcde”,

S [1..3] = “bcd”,

S [2..2] = “c”.

Find Pattern in Text

Input: Strings T and P .

Output: All such positions i in T ,

0 ≤ i ≤ |T | − |P | that
T [i ..i + |P | − 1] = P .

Naive Algorithm

For each position i from 0 to |T | − |P |,
check character-by-character whether

T [i ..i + |P | − 1] = P or not.

If yes, append i to the result.

AreEqual(S1, S2)

if |S1| ≠ |S2|:
return False

for i from 0 to |S1| − 1:

if S1[i] ̸= S2[i]:

return False

return True

FindPatternNaive(T ,P)

result ← empty list

for i from 0 to |T | − |P |:
if AreEqual(T [i ..i + |P | − 1],P):

result.Append(i)

return result

Running Time

Lemma

Running time of FindPatternNaive(T ,P)

is O(|T ||P |).

Proof

Each AreEqual call is O(|P |)
|T | − |P |+ 1 calls of AreEqual total to

O((|T | − |P | + 1)|P |) = O(|T ||P |)

Running Time

Lemma

Running time of FindPatternNaive(T ,P)

is O(|T ||P |).

Proof

Each AreEqual call is O(|P |)

|T | − |P |+ 1 calls of AreEqual total to

O((|T | − |P | + 1)|P |) = O(|T ||P |)

Running Time

Lemma

Running time of FindPatternNaive(T ,P)

is O(|T ||P |).

Proof

Each AreEqual call is O(|P |)
|T | − |P |+ 1 calls of AreEqual total to

O((|T | − |P | + 1)|P |) = O(|T ||P |)

Bad Example

If T = “aaa . . . aa” and P = “aaa . . . ab”,

and |T | ≫ |P |, then for each position i in T

from 0 to |T | − |P | the call to AreEqual

has to make all |P | comparisons.

This is because T [i ..i + |P | − 1] and P di�er

only in the last character.

Thus, in this case the naive algorithm runs in

time Θ(|T ||P |).

Outline

1 Search Pattern in Text

2 Rabin-Karp's Algorithm

3 Improving Running Time

Rabin-Karp’s Algorithm

Need to compare P with all substrings S

of T of length |P |

Idea: use hashing to quickly compare P

with substrings of T

Rabin-Karp’s Algorithm

Need to compare P with all substrings S

of T of length |P |
Idea: use hashing to quickly compare P

with substrings of T

Rabin-Karp’s Algorithm

If h(P) ̸= h(S), then de�nitely P ̸= S

If h(P) = h(S), call AreEqual(P , S)

Use polynomial hash family 𝒫p with

prime p

If P ̸= S , the probability

Pr [h(P) = h(S)] is at most |P |p for

polynomial hashing

Rabin-Karp’s Algorithm

If h(P) ̸= h(S), then de�nitely P ̸= S

If h(P) = h(S), call AreEqual(P , S)

Use polynomial hash family 𝒫p with

prime p

If P ̸= S , the probability

Pr [h(P) = h(S)] is at most |P |p for

polynomial hashing

Rabin-Karp’s Algorithm

If h(P) ̸= h(S), then de�nitely P ̸= S

If h(P) = h(S), call AreEqual(P , S)

Use polynomial hash family 𝒫p with

prime p

If P ̸= S , the probability

Pr [h(P) = h(S)] is at most |P |p for

polynomial hashing

Rabin-Karp’s Algorithm

If h(P) ̸= h(S), then de�nitely P ̸= S

If h(P) = h(S), call AreEqual(P , S)

Use polynomial hash family 𝒫p with

prime p

If P ̸= S , the probability

Pr [h(P) = h(S)] is at most |P |p for

polynomial hashing

RabinKarp(T ,P)

p ← big prime, x ← random(1, p − 1)

result ← empty list

pHash ← PolyHash(P , p, x)

for i from 0 to |T | − |P |:
tHash ← PolyHash(T [i ..i+|P |−1], p, x)
if pHash ̸= tHash:

continue

if AreEqual(T [i ..i + |P | − 1],P):

result.Append(i)

return result

False Alarms

�False alarm� is the event when P is

compared with T [i ..i + |P | − 1], but

P ̸= T [i ..i + |P | − 1].

The probability of �false alarm� is at most |P |p

On average, the total number of �false

alarms� will be (|T | − |P | + 1) |P |p , which can

be made small by selecting p ≫ |T ||P |.

Running Time without AreEqual

h(P) is computed in O(|P |)

h(T [i ..i + |P | − 1]) is computed in

O(|P |), |T | − |P | + 1 times

O(|P |) + O((|T | − |P | + 1)|P |) =
O(|T ||P |)

Running Time without AreEqual

h(P) is computed in O(|P |)
h(T [i ..i + |P | − 1]) is computed in

O(|P |), |T | − |P | + 1 times

O(|P |) + O((|T | − |P | + 1)|P |) =
O(|T ||P |)

Running Time without AreEqual

h(P) is computed in O(|P |)
h(T [i ..i + |P | − 1]) is computed in

O(|P |), |T | − |P | + 1 times

O(|P |) + O((|T | − |P | + 1)|P |) =
O(|T ||P |)

AreEqual Running Time

AreEqual is computed in O(|P |)

AreEqual is called only when

h(P) = h(T [i ..i + |P | − 1]), meaning

that either an occurrence of P is found

or a �false alarm� happened

By selecting p ≫ |T ||P | we make the

number of �false alarms� negligible

AreEqual Running Time

AreEqual is computed in O(|P |)
AreEqual is called only when

h(P) = h(T [i ..i + |P | − 1]), meaning

that either an occurrence of P is found

or a �false alarm� happened

By selecting p ≫ |T ||P | we make the

number of �false alarms� negligible

AreEqual Running Time

AreEqual is computed in O(|P |)
AreEqual is called only when

h(P) = h(T [i ..i + |P | − 1]), meaning

that either an occurrence of P is found

or a �false alarm� happened

By selecting p ≫ |T ||P | we make the

number of �false alarms� negligible

Total Running Time

If P is found q times in T , then total

time spent in AreEqual is

O((q + (|T |−|P |+1)|P |
p)|P |) = O(q|P |) for

p ≫ |T ||P |

Total running time is

O(|T ||P |) + O(q|P |) = O(|T ||P |) as
q ≤ |T |
Same as naive algorithm, but can be

improved!

Total Running Time

If P is found q times in T , then total

time spent in AreEqual is

O((q + (|T |−|P |+1)|P |
p)|P |) = O(q|P |) for

p ≫ |T ||P |
Total running time is

O(|T ||P |) + O(q|P |) = O(|T ||P |) as
q ≤ |T |

Same as naive algorithm, but can be

improved!

Total Running Time

If P is found q times in T , then total

time spent in AreEqual is

O((q + (|T |−|P |+1)|P |
p)|P |) = O(q|P |) for

p ≫ |T ||P |
Total running time is

O(|T ||P |) + O(q|P |) = O(|T ||P |) as
q ≤ |T |
Same as naive algorithm, but can be

improved!

Outline

1 Search Pattern in Text

2 Rabin-Karp's Algorithm

3 Improving Running Time

Improving Running Time

h(S) =

|S |−1∑︁
i=0

S [i]x i mod p

h(T [i ..i + |P | − 1]) =

i+|P |−1∑︁
j=i

T [j]x j−i mod p

Idea: polynomial hashes of two consecutive

substrings of T are very similar

For each i denote h(T [i ..i + |P | − 1]) by H [i]

Improving Running Time

h(S) =

|S |−1∑︁
i=0

S [i]x i mod p

h(T [i ..i + |P | − 1]) =

i+|P |−1∑︁
j=i

T [j]x j−i mod p

Idea: polynomial hashes of two consecutive

substrings of T are very similar

For each i denote h(T [i ..i + |P | − 1]) by H [i]

Improving Running Time

h(S) =

|S |−1∑︁
i=0

S [i]x i mod p

h(T [i ..i + |P | − 1]) =

i+|P |−1∑︁
j=i

T [j]x j−i mod p

Idea: polynomial hashes of two consecutive

substrings of T are very similar

For each i denote h(T [i ..i + |P | − 1]) by H [i]

Improving Running Time

h(S) =

|S |−1∑︁
i=0

S [i]x i mod p

h(T [i ..i + |P | − 1]) =

i+|P |−1∑︁
j=i

T [j]x j−i mod p

Idea: polynomial hashes of two consecutive

substrings of T are very similar

For each i denote h(T [i ..i + |P | − 1]) by H [i]

Consecutive substrings

a b c b dT =
T ′ = 0 1 2 1 3 |P | = 3

Consecutive substrings

a b c b dT =
T ′ = 0 1 2 1 3 |P | = 3

h("cbd") =

Consecutive substrings

a b c b dT =
T ′ = 0 1 2 1 3 |P | = 3

1 x x2h("cbd") =

Consecutive substrings

a b c b dT =
T ′ = 0 1 2 1 3 |P | = 3

h("cbd") = 2 x 3x2

Consecutive substrings

a b c b dT =
T ′ = 0 1 2 1 3 |P | = 3

h("cbd") = 2 x 3x2+ +

Consecutive substrings

a b c b dT =
T ′ = 0 1 2 1 3 |P | = 3

h("cbd") = 2 x 3x2+ +

h("bcb") =

Consecutive substrings

a b c b dT =
T ′ = 0 1 2 1 3 |P | = 3

h("cbd") = 2 x 3x2+ +

h("bcb") = 1 x x2

Consecutive substrings

a b c b dT =
T ′ = 0 1 2 1 3 |P | = 3

h("cbd") = 2 x 3x2+ +

h("bcb") = 1 2x x2

Consecutive substrings

a b c b dT =
T ′ = 0 1 2 1 3 |P | = 3

h("cbd") = 2 x 3x2+ +

h("bcb") = 1 2x x2+ +

Consecutive substrings

a b c b dT =
T ′ = 0 1 2 1 3 |P | = 3

h("cbd") = 2 x 3x2+ +

h("bcb") = 1 2x x2+ +
×x ×x

Consecutive substrings

a b c b dT =
T ′ = 0 1 2 1 3 |P | = 3

h("cbd") = 2 x 3x2+ +

h("bcb") = 1 2x x2+ +
×x ×x

H [2] = h("cbd") = 2 + x + 3x2

Consecutive substrings

a b c b dT =
T ′ = 0 1 2 1 3 |P | = 3

h("cbd") = 2 x 3x2+ +

h("bcb") = 1 2x x2+ +
×x ×x

H [2] = h("cbd") = 2 + x + 3x2

H [1] = h("bcb") = 1 + 2x + x2 =

Consecutive substrings

a b c b dT =
T ′ = 0 1 2 1 3 |P | = 3

h("cbd") = 2 x 3x2+ +

h("bcb") = 1 2x x2+ +
×x ×x

H [2] = h("cbd") = 2 + x + 3x2

H [1] = h("bcb") = 1 + 2x + x2 =

= 1 + x(2 + x) =

Consecutive substrings

a b c b dT =
T ′ = 0 1 2 1 3 |P | = 3

h("cbd") = 2 x 3x2+ +

h("bcb") = 1 2x x2+ +
×x ×x

H [2] = h("cbd") = 2 + x + 3x2

H [1] = h("bcb") = 1 + 2x + x2 =

= 1 + x(2 + x) =

= 1 + x(2 + x + 3x2)− 3x3 =

Consecutive substrings

a b c b dT =
T ′ = 0 1 2 1 3 |P | = 3

h("cbd") = 2 x 3x2+ +

h("bcb") = 1 2x x2+ +
×x ×x

H [2] = h("cbd") = 2 + x + 3x2

H [1] = h("bcb") = 1 + 2x + x2 =

= 1 + x(2 + x) =

= 1 + x(2 + x + 3x2)− 3x3 =

= xH [2] + 1− 3x3

Recurrence of Hashes

H[i + 1] =
i+|P|∑︀
j=i+1

T [j]x j−i−1 mod p

H[i] =
i+|P|−1∑︀

j=i

T [j]x j−i mod p =

=
i+|P|∑︀
j=i+1

T [j]x j−i + T [i]− T [i + |P |]x |P| mod p =

= x
i+|P|∑︀
j=i+1

T [j]x j−i−1 + (T [i]− T [i + |P |]x |P|) mod p

H[i] = xH[i + 1] + (T [i]− T [i + |P |]x |P|) mod p

Recurrence of Hashes

H[i + 1] =
i+|P|∑︀
j=i+1

T [j]x j−i−1 mod p

H[i] =
i+|P|−1∑︀

j=i

T [j]x j−i mod p =

=
i+|P|∑︀
j=i+1

T [j]x j−i + T [i]− T [i + |P |]x |P| mod p =

= x
i+|P|∑︀
j=i+1

T [j]x j−i−1 + (T [i]− T [i + |P |]x |P|) mod p

H[i] = xH[i + 1] + (T [i]− T [i + |P |]x |P|) mod p

Recurrence of Hashes

H[i + 1] =
i+|P|∑︀
j=i+1

T [j]x j−i−1 mod p

H[i] =
i+|P|−1∑︀

j=i

T [j]x j−i mod p =

=
i+|P|∑︀
j=i+1

T [j]x j−i + T [i]− T [i + |P |]x |P| mod p =

= x
i+|P|∑︀
j=i+1

T [j]x j−i−1 + (T [i]− T [i + |P |]x |P|) mod p

H[i] = xH[i + 1] + (T [i]− T [i + |P |]x |P|) mod p

Recurrence of Hashes

H[i + 1] =
i+|P|∑︀
j=i+1

T [j]x j−i−1 mod p

H[i] =
i+|P|−1∑︀

j=i

T [j]x j−i mod p =

=
i+|P|∑︀
j=i+1

T [j]x j−i + T [i]− T [i + |P |]x |P| mod p =

= x
i+|P|∑︀
j=i+1

T [j]x j−i−1 + (T [i]− T [i + |P |]x |P|) mod p

H[i] = xH[i + 1] + (T [i]− T [i + |P |]x |P|) mod p

Recurrence of Hashes

H[i + 1] =
i+|P|∑︀
j=i+1

T [j]x j−i−1 mod p

H[i] =
i+|P|−1∑︀

j=i

T [j]x j−i mod p =

=
i+|P|∑︀
j=i+1

T [j]x j−i + T [i]− T [i + |P |]x |P| mod p =

= x
i+|P|∑︀
j=i+1

T [j]x j−i−1 + (T [i]− T [i + |P |]x |P|) mod p

H[i] = xH[i + 1] + (T [i]− T [i + |P |]x |P|) mod p

PrecomputeHashes(T , |P |, p, x)
H ← array of length |T | − |P |+ 1

S ← T [|T | − |P |..|T | − 1]
H[|T | − |P |]← PolyHash(S , p, x)
y ← 1

for i from 1 to |P |:
y ← (y × x) mod p

for i from |T | − |P | − 1 down to 0:

H[i]← (xH[i + 1] + T [i]− yT [i + |P |]) mod p
return H

O(|P |+|P |+|T | − |P |) = O(|T | + |P |)

PrecomputeHashes(T , |P |, p, x)
H ← array of length |T | − |P |+ 1

S ← T [|T | − |P |..|T | − 1]
H[|T | − |P |]← PolyHash(S , p, x)
y ← 1

for i from 1 to |P |:
y ← (y × x) mod p

for i from |T | − |P | − 1 down to 0:

H[i]← (xH[i + 1] + T [i]− yT [i + |P |]) mod p
return H

O(|P |

+|P |+|T | − |P |) = O(|T | + |P |)

PrecomputeHashes(T , |P |, p, x)
H ← array of length |T | − |P |+ 1

S ← T [|T | − |P |..|T | − 1]
H[|T | − |P |]← PolyHash(S , p, x)
y ← 1

for i from 1 to |P |:
y ← (y × x) mod p

for i from |T | − |P | − 1 down to 0:

H[i]← (xH[i + 1] + T [i]− yT [i + |P |]) mod p
return H

O(|P |+|P |

+|T | − |P |) = O(|T | + |P |)

PrecomputeHashes(T , |P |, p, x)
H ← array of length |T | − |P |+ 1

S ← T [|T | − |P |..|T | − 1]
H[|T | − |P |]← PolyHash(S , p, x)
y ← 1

for i from 1 to |P |:
y ← (y × x) mod p

for i from |T | − |P | − 1 down to 0:

H[i]← (xH[i + 1] + T [i]− yT [i + |P |]) mod p
return H

O(|P |+|P |+|T | − |P |) = O(|T | + |P |)

Precomputing H

PolyHash is called once � O(|P |)
First for loop runs in O(|P |)
Second for loop runs in O(|T | − |P |)
Total precomputation time O(|T |+ |P |)

RabinKarp(T ,P)

p ← big prime, x ← random(1, p − 1)

result ← empty list

pHash ← PolyHash(P , p, x)

H ← PrecomputeHashes(T , |P |, p, x)
for i from 0 to |T | − |P |:

if pHash ̸= H [i]:

continue

if AreEqual(T [i ..i + |P | − 1],P):

result.Append(i)

return result

Improved Running Time

h(P) is computed in O(|P |)

PrecomputeHashes runs in

O(|T | + |P |)
Total time spent in AreEqual is

O(q|P |) on average where q is the

number of occurrences of P in T

Average running time

O(|T | + (q + 1)|P |)
Usually q is small, so this is much less

than O(|T ||P |)

Improved Running Time

h(P) is computed in O(|P |)
PrecomputeHashes runs in

O(|T | + |P |)

Total time spent in AreEqual is

O(q|P |) on average where q is the

number of occurrences of P in T

Average running time

O(|T | + (q + 1)|P |)
Usually q is small, so this is much less

than O(|T ||P |)

Improved Running Time

h(P) is computed in O(|P |)
PrecomputeHashes runs in

O(|T | + |P |)
Total time spent in AreEqual is

O(q|P |) on average where q is the

number of occurrences of P in T

Average running time

O(|T | + (q + 1)|P |)
Usually q is small, so this is much less

than O(|T ||P |)

Improved Running Time

h(P) is computed in O(|P |)
PrecomputeHashes runs in

O(|T | + |P |)
Total time spent in AreEqual is

O(q|P |) on average where q is the

number of occurrences of P in T

Average running time

O(|T | + (q + 1)|P |)

Usually q is small, so this is much less

than O(|T ||P |)

Improved Running Time

h(P) is computed in O(|P |)
PrecomputeHashes runs in

O(|T | + |P |)
Total time spent in AreEqual is

O(q|P |) on average where q is the

number of occurrences of P in T

Average running time

O(|T | + (q + 1)|P |)
Usually q is small, so this is much less

than O(|T ||P |)

Conclusion

Hash tables are useful for storing Sets

and Maps

Possible to search and modify hash

tables in O(1) on average!

Must use good hash families and

randomization

Hashes are also useful while working

with strings and texts

There are many more applications in

distributed systems and data science

Conclusion

Hash tables are useful for storing Sets

and Maps

Possible to search and modify hash

tables in O(1) on average!

Must use good hash families and

randomization

Hashes are also useful while working

with strings and texts

There are many more applications in

distributed systems and data science

Conclusion

Hash tables are useful for storing Sets

and Maps

Possible to search and modify hash

tables in O(1) on average!

Must use good hash families and

randomization

Hashes are also useful while working

with strings and texts

There are many more applications in

distributed systems and data science

Conclusion

Hash tables are useful for storing Sets

and Maps

Possible to search and modify hash

tables in O(1) on average!

Must use good hash families and

randomization

Hashes are also useful while working

with strings and texts

There are many more applications in

distributed systems and data science

Conclusion

Hash tables are useful for storing Sets

and Maps

Possible to search and modify hash

tables in O(1) on average!

Must use good hash families and

randomization

Hashes are also useful while working

with strings and texts

There are many more applications in

distributed systems and data science

	Search Pattern in Text
	Rabin-Karp's Algorithm
	Improving Running Time

